Principles of dynamical modularity
in biological regulatory networks
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Biological networks are hierarchically modular
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What types of
regulatory networks generate

phenotype
combinations?
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Problem: how do small circuits
(responsible for specific phenotypes) work
INSIDE large changing networks?
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Discrete phenotypes are governed by

Development

switches
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differentiation event
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Discrete phenotypes are governed by w
switches
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Problem: how do regulatory switches
(responsible for specific phenotype-choices)
work INSIDE large changing networks?

N Large genetic network
Mid-size genetic network B e S

Phenotype switch

cell cycle entry vs. quiescence

Apoptosis vs. survival

MSC vs. fat vs. bone

how do switches
“talk” ?




Problem: how do regulatory switches
(responsible for specific phenotype-choices)
work INSIDE large modular networks?

Mid-size genetic network 7\
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Phenotype switch Phenotype-combination switch ?

cell cycle entry vs. quiescence Suggests a general principle
Apoptosis vs. survival that governs how regulatory
networks assemble!
MSC vs. fat vs. bone




Principle of dynamical modularity

Phenotypes of a multi-switch regulatory system =

COMBINATIONS OF SWITCH-PHENOTYPES
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Boolean case study - the <4, B

synthesis
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Two-module cell cycle model

e 2 phenotypes (before/after
R-point)

e 2 cell-wide phenotypes

quiescence

e fixed-point
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* 3 phenotypes (G1/G2/SAC)
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How do the cell cycle switches work together?

Isolated Couples
switches switches

Before RP

®* nodes of the 3D layout: global network states (each state has the same position on both panels)



How do the cell cycle switches work together?

Couples

Cell cycle switches
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Can we quantify the modularity of global

dynamics?
Attractor Modularity Measure (AMM)
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What types of random networks
do better than cell cycle?

¢ 1 robust global state!
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A biological network shouldn’t “loose” a
regulatory switch-phenotype!

Principle of switch-phenotype relevance

Every module phenotype is present in at
least one global phenotype of the multi-
module circuit.

Switch states System states
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¢ all are present

® 2*3%2%2 = 24
possible combinations
® only 3 global states
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Switch Stability Measure (SSM) in Boolean

models
EVERY SWITCH PHENOTYPE APPEARS IN
AT LEAST 1 GLOBAL STATE

Module Coupled

attractor attractors
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Quantify the relevance of switch phenotypes:
Swith Stability Measure (SSM)

® how much time does the global dynamics spend “expressing” a switch-phenotype?

EVERY SWITCH PHENOTYPE

APPEARS IN AT LEAST 1

GLOBAL STATE

SSM
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Some randomized switch-

phenotypes do not appear in

any global phenotype 0.0 0.2 0.4 0.6 0.8
AMM



SSM

00 02 04 06 08 1.0

What types of random networks
still beat the cell cycle?
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e every switch-
“ phenotype
combination is a
global state

Easy to follow both rules if
the switches “dont talk”!



Independence vs. coordination of
module dynamics

Mid-size genetic network

Phenotype switch

Independence: Coordination:

Phenotype-combination switch

- I. modular dynamics - ITI. 2727272

- II. switch phenotype relevance : :
How do switches work in

a hierarchy?



Switches that form a higher-scale module
restrict each other’s phenotypes

Principle of switch coodination

Dynamical Modules at all scales are robust
switches with minimal number of radically
different phenotypes.

Switch states System states
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Module Quality & Coordination (MQC) in
Boolean models

MODULES AT ALL LEVELS ARE

1. How distinct are the phenotypes? SWITCHES AMONG FEW,
DISTINCT PHENOTYPES

‘ Hhs=5
S O, 2. How strong is the coupling
LA 4 Phase SW L e between switches?
Module Coordination Measure
Hi2 - H23 =5
mcM =|(] | a.)-a.|/(]] 4.

[ MCpsw = <Hi j>/Hmax(3) )

Module Quality Measure
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Random networks are abysmal at balancing
all 3 rules

e CELL CYCLE

¢ Random networks

e Randomized switch IDs

¢ Randomized inter-switch links




Summary of dynamical modularity in cellular
regulatory networks

CORE PREMISE

Regulatory Module =
Discrete Phenotype Switch

MODULE OF HIERARCHY
MODULE MODULES OF MODULES

Regulatory Network =
Hierarchy of Coupled
Switches

I. Phenotypes of a multi-switch system are switch-phenotype combinations

II. Every switch-phenotype is present in at least one global phenotype

III. Dynamical modules at all scales are multistable switches with a small
number of radically different phenotypes



Have these insights helped?
— current work —

EMT model MiDAS model
- TFGf - ROS
- hypoxia - SIRT3 KO
- biomechanical cues (ECM, density) - mito dysfunction

Giycolysis & h
Warburg Module §

Adhesion

W
LX)

Contact inhibition

Cell cycle control &

e basel 74

Hifta High

Greene et al, 2025. PLoS Comp.
Biol., 21(4): e1012735.

Sizek et al, 2024. Translational
Oncology, 49:102084.




Modular analysis tools

e switch attractors by signature
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Hypoxia_signaling TGF_beta GF_PI3K Warbur; Mitochondria Adhesion CIP Migration_SW EMT Restriction_ SW  Phase_SW  Cell_Cycle_Process Apoptotic_SW
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Low_glycolysis Normal_Mito Attached Slow_Migrating Hybrid_EM G2
No_Hypoxia_sig No_TGF _sig Basal_PI3K No_glycolysis Fragmented Unanchored Contact_Inhibition Nonmigrating Epithelial Before_RP Quiescence

e.g.: Survival = (Casp3:0, Casp9:0, Caspl:0, GSDMD:0)

® model attractors by input signal-combination mesenchymal

CellDensity_High

s
s
s
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e
s

¢ timecourse in ferms of phenotypes
SIRT3 KO

CellDensity_Low on

Glucose on

Glucose off

CellDensity_Low off

cycling MIDAS

GF off GF on GF_High



Dynamically modular outlook on restoring
heatlhy cell function

Restore healthy
phenotype coordination




Major questions & future theory work

® how does dynamical modularity relate to stable motifs?
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e can we use stable motifs to find
regulatory modules in large networks?

e dynamical modularity measures for
continuous models

® how to conceptualize parts of a

network that are NOT switches?

e input signaling cascades that
process dynamical info but run
one-way

e “connective tissue” between
switches

® modules with an excitable but
robust oscillator (e.g. p53
oscillations)
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