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A  I. Principle of Robust Coordination
Dynamical Modules at all scales are robust 
switches with minimal number of radically 

different phenotypes.

DM States

the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part
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Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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B  II. Principle of Modular Dynamics
Phenotypes of multi-module regulatory 

circuits are combinations of module 
phenotypes.

DM States

the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part

A

B

C

Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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C  III. Principle of Phenotype Conservation
Every module phenotype is present in at 
least one global phenotype of the multi-

module circuit.

DM States

the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part
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Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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Biological networks are hierarchically modular
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the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part
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Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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Subdivision of modules using structural
and morphological characteristics

We tested whether it is possible to further group genes
within these functional modules by subjecting trans-
fected cells to a series of secondary assays designed to
measure structural and morphological characteristics
relevant for cell migration. These assays were based on
immunostaining of molecular markers for cell protru-
sion, cell–cell adhesion, cell surface adhesion, and cell
contraction. For example, we used phalloidin for F-actin
levels, anti-paxillin for FA size, anti-phospho-myosin II
for stress fibers, anti-tubulin for microtubules, and anti-
cadherin5 for AJs (Fig. 6A). We then developed auto-
mated image analysis scripts to identify cellular struc-
tures and quantify them according to area or intensity. In
addition, transfected cells were replated and fixed after 1
or 15 h to calculate the spreading rate and steady state
cell area, respectively. Finally, cadherin staining was
used to outline cell boundaries, allowing the determina-
tion of cell elongation (secondary analyses summarized
in Supplemental Table 3; secondary measurements are
provided in Supplemental Table 4).

We employed hierarchical clustering to organize genes
according to these secondary assay measurements, and
the results of this subclustering strategy are shown for
the directed migration module in Figure 6B. Interest-
ingly, although the hierarchical analysis does not in-
clude any kinetic parameters, it successfully separates
most fast and slow migrators across the first branch
point, suggesting that proximity to known regulators of
sheet migration provides a useful starting point to iden-
tify mechanistic roles for the many proteins with un-
known functions (Fig. 6B). In addition, the analysis can
be used to generate a putative functional connection
map of signaling components within the FGFR1–RAS–
PI3K signaling axis (Fig. 6B,C). Identical hierarchical
analyses for each of the other functional modules are
included in Supplemental Figure 5.

Discussion

Our study combines siRNA perturbations and functional
profiling to dissect growth factor-induced sheet migra-
tion. Our hierarchical decision tree analysis suggests
that all regulatory proteins can be assigned into four dis-
tinct modules controlling proliferation, single cell mo-
tility, directed migration, and cell–cell coordination (Fig.
7A). Individually, each of these modules controls a key
process necessary for sheet migration, and together, they
generate the higher-level, emergent behavior character-
istic of endothelial sheet migration.

An FGFR pioneer cell module for directed cell
migration

We found that genes associated with the FGFR–RAS–
PI3K signaling pathway comprise a directed migration
module that promotes sheet migration by orienting ex-
isting movement rather than enhancing cell velocity.

Based on the hierarchical classification shown in Figure
6B, one can propose putative functions for genes accord-
ing to their proximity to known regulators. For example,
genes within the red branch contain FGFR1 and its adap-
tors GAB1 and FRS2, suggesting that genes within this
group are likely involved in very upstream signaling ac-
tivities at the receptor level (Fig. 6B). The proximity of
the transport proteins COPB, NAPA, and ARCN1 to
FGFR1 suggests that they may reduce the delivery of
receptors or other upstream signaling components to the
plasma membrane. The proximity between RAS,
RASGEF1B, and RAP1A suggests that Rap and Ras may
have related roles in the initiation of cell polarization.
Finally, the putative function for proteins with no pre-
viously documented role in polarization and migration
can be predicted based on their proximity to known regu-
lators in the hierarchical analysis.

The importance of the FGF pathway is most apparent
under serum-free conditions, where cells migrate with
normal speed but fail to sense open space or respond
with directed movement. By mixing FGF-responsive and
FGF-unresponsive cells in the same monolayer, we dem-
onstrate that the extension of polarized lamellipodia is
an FGF-dependent and cell-autonomous process. These

Figure 7. Modular control of endothelial sheet migration. (A)
Schematic representation of sheet migration defects when spe-
cific functional modules are disabled by protein knockdown. A
number of genes from each module are listed as examples with
fast and slow sheet migration indicated as red and blue lettering,
respectively. (B) Coordination of sheet migration by an FGF-
dependent directed migration module and a FGF-independent
cell–cell coordination module.

Endothelial sheet migration
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end up in the same attractor forms the basin of attraction of

that attractor. Attractor states are robust, ‘‘self-stabilizing,’’

distinct states. Once an attractor is reached, the associated

expression pattern is maintained even after the original

stimulus that placed it in the corresponding basin has

disappeared. Thus, bistability is the most elementary

mechanism for memory in nature. The basins are separated

by regions of unstable states, which constitute the epigenetic

barriers. (See Box 2 for more details.) Small perturbations of

attractor states (imposed temporary changes in x1 or x2) are

‘‘buffered’’ by the basins of attraction, that is, the perturbed

circuit state S’ returns to the attractor state. In contrast, larger

perturbations above a distinct threshold will ‘‘kick’’ a state out

of the basin and into the other attractor. (Fig. 3B illustrates the

idea of attractor transitions).

Cell types as high-dimensional attractors

Given the dynamical properties of attractors, it is now natural

to equate each of the two stable attractor states SA and SB

with an observable, stable gene expression pattern, and

hence, with a cell fate, a lineage or a cell type. That cell types

correspond to attractor states was historically a central idea,

unfortunately forgotten as molecular biology turned its

attention to explaining cell fate regulation in terms of

molecular markers and linear pathways (Fig. 1A). It is

important to note the fundamental ontological difference

between arrows in the typical pathway charts that symbolize a

molecular causation and the arrows in state space that

represent a movement of S (a trajectory or path) driven by

network dynamics (Fig. 1C).

Figure 2. Dynamics of the 2-gene regulatory circuit. Qualitative explanation of basic principles of dynamical systems for the bistable (A–C) and
tristable (D–F) circuits. A, D. Circuit architecture for two mutually inhibitory genes. B, E. State space (x1–x2)-plane with typical vector field (flow
field). Each point in the plane is a gene expression configuration of the circuit (x1, x2). The arrows (vectors) indicate how the states S¼ (x1, x2),
arbitrarily positioned on a grid to cover the state space, move within a tiny time unit. In B, the states SA and SB (red dots) are stable steady states
(attractors); SC (empty circle) is an unstable steady state. In E, the central state SC is also an attractor. Dashed red line represents the separatrix,
dividing the state space into the basins of attraction.C, F. Associated (quasi) potential landscape.(96) (For the computation of the landscape in F a
circuit with different parameters than that underlying the vector field in E. was used to optimize 3D visualisation). Bottom: simplified schematic
representations, obtained from cross section along the dashed line " ------ ". G. Waddington’s ‘‘epigenetic landscape’’ (from ref.(70)) a qualitative
metaphor that predates the formal quasi-potential landscape of gene networks. H. Examples of gene regulatory circuits with the same
architecture which control binary decisions at branch points of cell differentiation in multi-potent cells, including CMP,(74) embryonic stem cells,(75)

and OAP.(97) The dashed arrows indicate that the positive feedback loops are indirect. Note that these circuits are embedded in larger regulatory
networks.

Problems and paradigms S. Huang

552 BioEssays 31:546–560, ! 2009 Wiley Periodicals, Inc.

end up in the same attractor forms the basin of attraction of

that attractor. Attractor states are robust, ‘‘self-stabilizing,’’

distinct states. Once an attractor is reached, the associated

expression pattern is maintained even after the original

stimulus that placed it in the corresponding basin has

disappeared. Thus, bistability is the most elementary

mechanism for memory in nature. The basins are separated

by regions of unstable states, which constitute the epigenetic

barriers. (See Box 2 for more details.) Small perturbations of

attractor states (imposed temporary changes in x1 or x2) are

‘‘buffered’’ by the basins of attraction, that is, the perturbed

circuit state S’ returns to the attractor state. In contrast, larger

perturbations above a distinct threshold will ‘‘kick’’ a state out

of the basin and into the other attractor. (Fig. 3B illustrates the

idea of attractor transitions).

Cell types as high-dimensional attractors

Given the dynamical properties of attractors, it is now natural

to equate each of the two stable attractor states SA and SB

with an observable, stable gene expression pattern, and

hence, with a cell fate, a lineage or a cell type. That cell types

correspond to attractor states was historically a central idea,

unfortunately forgotten as molecular biology turned its

attention to explaining cell fate regulation in terms of

molecular markers and linear pathways (Fig. 1A). It is

important to note the fundamental ontological difference

between arrows in the typical pathway charts that symbolize a

molecular causation and the arrows in state space that

represent a movement of S (a trajectory or path) driven by

network dynamics (Fig. 1C).

Figure 2. Dynamics of the 2-gene regulatory circuit. Qualitative explanation of basic principles of dynamical systems for the bistable (A–C) and
tristable (D–F) circuits. A, D. Circuit architecture for two mutually inhibitory genes. B, E. State space (x1–x2)-plane with typical vector field (flow
field). Each point in the plane is a gene expression configuration of the circuit (x1, x2). The arrows (vectors) indicate how the states S¼ (x1, x2),
arbitrarily positioned on a grid to cover the state space, move within a tiny time unit. In B, the states SA and SB (red dots) are stable steady states
(attractors); SC (empty circle) is an unstable steady state. In E, the central state SC is also an attractor. Dashed red line represents the separatrix,
dividing the state space into the basins of attraction.C, F. Associated (quasi) potential landscape.(96) (For the computation of the landscape in F a
circuit with different parameters than that underlying the vector field in E. was used to optimize 3D visualisation). Bottom: simplified schematic
representations, obtained from cross section along the dashed line " ------ ". G. Waddington’s ‘‘epigenetic landscape’’ (from ref.(70)) a qualitative
metaphor that predates the formal quasi-potential landscape of gene networks. H. Examples of gene regulatory circuits with the same
architecture which control binary decisions at branch points of cell differentiation in multi-potent cells, including CMP,(74) embryonic stem cells,(75)

and OAP.(97) The dashed arrows indicate that the positive feedback loops are indirect. Note that these circuits are embedded in larger regulatory
networks.

Problems and paradigms S. Huang

552 BioEssays 31:546–560, ! 2009 Wiley Periodicals, Inc.

Bone vs. fatHematopoiesis

end up in the same attractor forms the basin of attraction of

that attractor. Attractor states are robust, ‘‘self-stabilizing,’’

distinct states. Once an attractor is reached, the associated

expression pattern is maintained even after the original

stimulus that placed it in the corresponding basin has

disappeared. Thus, bistability is the most elementary

mechanism for memory in nature. The basins are separated

by regions of unstable states, which constitute the epigenetic

barriers. (See Box 2 for more details.) Small perturbations of

attractor states (imposed temporary changes in x1 or x2) are

‘‘buffered’’ by the basins of attraction, that is, the perturbed

circuit state S’ returns to the attractor state. In contrast, larger

perturbations above a distinct threshold will ‘‘kick’’ a state out

of the basin and into the other attractor. (Fig. 3B illustrates the

idea of attractor transitions).

Cell types as high-dimensional attractors

Given the dynamical properties of attractors, it is now natural

to equate each of the two stable attractor states SA and SB

with an observable, stable gene expression pattern, and

hence, with a cell fate, a lineage or a cell type. That cell types

correspond to attractor states was historically a central idea,

unfortunately forgotten as molecular biology turned its

attention to explaining cell fate regulation in terms of

molecular markers and linear pathways (Fig. 1A). It is

important to note the fundamental ontological difference

between arrows in the typical pathway charts that symbolize a

molecular causation and the arrows in state space that

represent a movement of S (a trajectory or path) driven by

network dynamics (Fig. 1C).

Figure 2. Dynamics of the 2-gene regulatory circuit. Qualitative explanation of basic principles of dynamical systems for the bistable (A–C) and
tristable (D–F) circuits. A, D. Circuit architecture for two mutually inhibitory genes. B, E. State space (x1–x2)-plane with typical vector field (flow
field). Each point in the plane is a gene expression configuration of the circuit (x1, x2). The arrows (vectors) indicate how the states S¼ (x1, x2),
arbitrarily positioned on a grid to cover the state space, move within a tiny time unit. In B, the states SA and SB (red dots) are stable steady states
(attractors); SC (empty circle) is an unstable steady state. In E, the central state SC is also an attractor. Dashed red line represents the separatrix,
dividing the state space into the basins of attraction.C, F. Associated (quasi) potential landscape.(96) (For the computation of the landscape in F a
circuit with different parameters than that underlying the vector field in E. was used to optimize 3D visualisation). Bottom: simplified schematic
representations, obtained from cross section along the dashed line " ------ ". G. Waddington’s ‘‘epigenetic landscape’’ (from ref.(70)) a qualitative
metaphor that predates the formal quasi-potential landscape of gene networks. H. Examples of gene regulatory circuits with the same
architecture which control binary decisions at branch points of cell differentiation in multi-potent cells, including CMP,(74) embryonic stem cells,(75)

and OAP.(97) The dashed arrows indicate that the positive feedback loops are indirect. Note that these circuits are embedded in larger regulatory
networks.

Problems and paradigms S. Huang

552 BioEssays 31:546–560, ! 2009 Wiley Periodicals, Inc.



populations have become highly enriched, and new mutant
shapes do not typically emerge (a shape is considered
enriched in the population if it comprises more than 10% of
the population). Only in a handful of cases did cells adopt a
seventh shape (shape 2) in addition to adopting a subset of
the six wild-type shapes, although shape 2 is not considered
enriched in any TC (see electronic supplementary material,
table S3). We propose that decreased heterogeneity following
gene inhibition or overexpression is because cells become
‘trapped’ in particular shapes during normal exploration of
shape space. Our finding that BG-2 morphogenesis occurs in
a low-dimensional space where heterogeneity is most often
decreased by genetic perturbation is consistent with our
recent finding thatDrosophilaKc haemocyte cells andmetastatic
melanoma cells adopt a limited number of discrete shapes even
following RNAi [7], as well as with thework of Keren et al. [13],
who show that migrating fish keratocytes adopt a limited
number of shapes. The methods we use to describe heterogen-
eity are similar to those implemented by Slack et al. [32] to
examine the heterogeneity of different signalling events in iso-
geneic populations; however, to our knowledge, this is the
first study to implement heterogeneity profiles to describe cell
shape in the context of an RNAi screen.

3.2. Assessment of different cell shapes
In order to understand the mechanistic basis for the different
cell shapes adopted by BG-2 cells, we first qualitatively

characterize each of the seven shapes present in the entire data-
set based on three broad parameters: polarity, protrusivity, and
the extent to which cells are spread and appear adhered to the
underlying substrate (table 1). Furthermore, when possible, we
infer the activation state of either Rac-type GTPases (hereafter
referred to as ‘Rac’; we cannot differentiate here between the
activity of Rac1, Rac2 andMtl) or Rho1 GTPases (theDrosophila
orthologue of mammalian RhoA), based on those genes whose
depletion or overexpression results in a particular shape, and in
some cases the protrusive/contractile nature of the cell. For
example, shape 5 is a polarized shape characteristic of motile
cells, where cells exhibit lamellipodia and/or filopodia at the
presumptive LE, and a contractile tail at the TE. Based on pre-
vious literature [9], we assume that in shape 5 cells Rac
activity is high at the LE, and Rho activity is high at the TE.
In support of this idea, shape 5 is decreased following Rho
or Rac activation or inhibition (see electronic supplementary
material, table S3). By contrast, shape 1 is enriched following
Rho activation, and shape 7 is enriched following Rac acti-
vation. Thus, different states of Rho/Rac activity correlate
with different shapes and with the activation of specific
morphological processes such as protrusion or adhesion.

3.3. A Boolean model to describe cell shape by
localized Rho/Rac activation

Given that each of the seven shapes correlates qualitatively
with different levels of Rho/Rac activity, and/or differences
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Figure 2. Single-cell clustering. (a) Average silhouette value for different numbers of clusters using Gaussian mixture modelling (GMM) and hierarchical clustering.
Higher averages represent better cluster quality, and the best clustering for this dataset was reached when cells were grouped into seven clusters using hierarchical
clustering. (b) Silhouette values of single cells for the best model. (c) Silhouette values of single cells for the best model after correction using KNN. (d ) Single-cell
data for all TCs are projected in the first three PCs and coloured based on the single-cell hierarchical clustering results, where clusters are denoted by shapes 1–7.
Next to each shape cluster is a representative cell shape from that cluster. (e) Qualitative interpretation of PC space.
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condensation minimizes drag and potential 
breakage while the chromosomes are pushed 
and pulled during segregation to the opposite 
sides of the dividing cell. Coschi et al.3 dem-
onstrate in mice that Rb facilitates chromo-
some condensation, independently of its role 
in DNA replication. When combined with an 
additional mutation in another tumour-sup-
pressor protein, mitotic defects caused by the 
loss of Rb resulted in highly aggressive cancers. 
The involvement of Rb in chromosome con-
densation therefore seems to be crucial for its 
tumour-suppressive activity.

Manning and colleagues4 report that Rb is 
also required for the functioning of specialized 
chromosomal regions called centromeres. 
Chromosomes attach to the mitotic spindle 
through centromeres, which move along the 
spindle to the opposite ends of the dividing cell. 
Rb mediates the proper condensation and ori-
entation of centromeres on duplicated chromo-
somes and thus their attachment to the spindle. 
Strikingly, Manning et al. find that, when the Rb 
function is compromised, the levels of chromo-
some mis-segregation rise to those measured in 
tumour cells.

The stability of chromosomes must also be 
maintained during mitosis, when chromo-

somes can break. Van Harn et al.5 
provide evidence that mouse fibro-
blast cells lacking functional Rb and 
its related proteins p107 and p130 are 
more prone to chromosome breakage. 
On cell division, broken chromosomes 
are haphazardly distributed between 
the two daughter cells, which can lead 
to cells that are missing genetic infor-
mation on some chromosomes or  
that carry duplicate copies of some 
chromosome regions (Fig. 1).

Apart from implicating Rb in the 
control of mitotic chromosomes, the 
three studies have another theme in 
common: loss of Rb function does not 
doom cells to death. Consequently, 
when the function of this protein is 
compromised, low-level defects in 
any of these mitotic processes can 
ensue, setting the stage for inherit-
ance of altered genetic instructions 
at each cycle of cell division, and 
incrementally increasing the likeli-
hood of generating a renegade cell 
with uncontrollable proliferative  
potential. 

How exactly does Rb facilitate 
chromosome condensation, ensure 
centromere function and protect 
chromosomes from breakage? Of 
particular interest is the molecular 
machinery that works on chromo-
somes to condense them. What precise 
role does condensation have on cen-
tromere function? Although general 
chromosome condensation is abnor-
mal in Rb-deficient cells, chromo-
somes nevertheless achieve sufficient 

CELL CYCLE 

Retinoblastoma, a trip organizer 
Giovanni Bosco

The retinoblastoma protein is essential for accurate DNA replication, and 
its loss is commonly associated with cancer. It emerges that this protein 
also regulates another stage of the cell cycle. 

Just as a team of explorers needs a detailed map 
to guide them on their journey, a cell uses infor-
mation held within its DNA, and packaged into 
chromosomes, for guidance throughout its life. 
It is therefore crucial that genetic information 
is faithfully maintained for the lifetime of the 
cell and of its progeny. The tumour-suppressor 
protein retinoblastoma is known for its role in 
regulating DNA replication and so maintaining 
genome stability1,2. Three papers3–5 published 
in Genes & Development now also implicate 
this protein in mediating proper distribution of 
genetic information between the two daughter 
cells during mitotic cell division. 

Once a cell divides, its genetic information 
instructs it what shape to assume, what func-
tions to perform, how quickly to proliferate 
again or whether to stop dividing alto-
gether. Indeed, some of the genes that 
regulate the cell-division cycle serve as 
brakes to halt the cell’s journey, allow-
ing it to differentiate and settle into 
its final tissue destination. Incorrect 
copying of the genetic instructions 
or damage to the DNA harbouring 
these instructions could lead the cell 
to the wrong destination or, worse, 
to an endless journey — a crisis that  
warrants cell death. 

Tumour-suppressor proteins stop 
cell division under such circum-
stances. For instance, the retino-
blastoma (Rb) protein — the loss of 
which can cause human eye tumours, 
as well as most other types of cancer1 — 
can stop cell proliferation by limiting 
the expression of genes that promote 
DNA replication during the S phase 
of the cell cycle1,2 (Fig. 1). It thus puts 
a strong brake on cell division that  
is removed only when the cell has 
little chance to pass on erroneous or 
incomplete genetic instructions. 

Just as essential as faithful DNA 
replication is the accurate distribu-
tion of the replicated chromosomes 
between the two daughter cells during 
cell division. (By analogy, if members 
of the explorers’ team decide to go 
their separate ways, accurate copies of 
the map would be of little use if they 
were not equally distributed among 
the explorers.) 

Chromosomes are equally segre-
gated into the daughter cells during 
mitosis, or the M phase of the cell 

cycle (Fig. 1). There have been hints2 that Rb 
also plays a direct part in segregating chromo-
somes during mitosis, although it remained 
unclear whether mitotic defects associated 
with loss of this protein were an indirect con-
sequence of errors committed during the pre-
ceding S phase. Could it be that Rb mediates 
both accurate and timely DNA replication and 
proper distribution of chromosomes in mito-
sis? The answer is yes, according to the three 
new studies3–5. 

For chromosomes to physically move 
through the viscous environment of the cell, 
they must condense into relatively small and 
stiff shapes. Just like folding a map into a com-
pact form allows its easy storage and protects 
it against damage during travel, presumably 
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Figure 1 | Retinoblastoma and the cell cycle. Dividing cells undergo 
cycles of division, in which the S phase (when DNA replicates) is 
separated from the M phase (when mitotic cell division occurs) by 
two gap phases, G1 and G2. The role of the retinoblastoma (Rb) 
protein in regulating the transition from the G1 to the S phase is well 
established. Three studies3–5 now implicate this protein in mediating 
chromosome dynamics during the M phase. Outcomes of Rb 
deficiency during mitosis include chromosome gain, chromosome 
loss and chromosome breakage. 
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Problem: how do regulatory switches 
(responsible for specific phenotype-choices) 

work INSIDE large modular networks?
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the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part

A

B

C

Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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DM States

the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part

A
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C

Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part
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Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part
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Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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condensation minimizes drag and potential 
breakage while the chromosomes are pushed 
and pulled during segregation to the opposite 
sides of the dividing cell. Coschi et al.3 dem-
onstrate in mice that Rb facilitates chromo-
some condensation, independently of its role 
in DNA replication. When combined with an 
additional mutation in another tumour-sup-
pressor protein, mitotic defects caused by the 
loss of Rb resulted in highly aggressive cancers. 
The involvement of Rb in chromosome con-
densation therefore seems to be crucial for its 
tumour-suppressive activity.

Manning and colleagues4 report that Rb is 
also required for the functioning of specialized 
chromosomal regions called centromeres. 
Chromosomes attach to the mitotic spindle 
through centromeres, which move along the 
spindle to the opposite ends of the dividing cell. 
Rb mediates the proper condensation and ori-
entation of centromeres on duplicated chromo-
somes and thus their attachment to the spindle. 
Strikingly, Manning et al. find that, when the Rb 
function is compromised, the levels of chromo-
some mis-segregation rise to those measured in 
tumour cells.

The stability of chromosomes must also be 
maintained during mitosis, when chromo-

somes can break. Van Harn et al.5 
provide evidence that mouse fibro-
blast cells lacking functional Rb and 
its related proteins p107 and p130 are 
more prone to chromosome breakage. 
On cell division, broken chromosomes 
are haphazardly distributed between 
the two daughter cells, which can lead 
to cells that are missing genetic infor-
mation on some chromosomes or  
that carry duplicate copies of some 
chromosome regions (Fig. 1).

Apart from implicating Rb in the 
control of mitotic chromosomes, the 
three studies have another theme in 
common: loss of Rb function does not 
doom cells to death. Consequently, 
when the function of this protein is 
compromised, low-level defects in 
any of these mitotic processes can 
ensue, setting the stage for inherit-
ance of altered genetic instructions 
at each cycle of cell division, and 
incrementally increasing the likeli-
hood of generating a renegade cell 
with uncontrollable proliferative  
potential. 

How exactly does Rb facilitate 
chromosome condensation, ensure 
centromere function and protect 
chromosomes from breakage? Of 
particular interest is the molecular 
machinery that works on chromo-
somes to condense them. What precise 
role does condensation have on cen-
tromere function? Although general 
chromosome condensation is abnor-
mal in Rb-deficient cells, chromo-
somes nevertheless achieve sufficient 

CELL CYCLE 

Retinoblastoma, a trip organizer 
Giovanni Bosco

The retinoblastoma protein is essential for accurate DNA replication, and 
its loss is commonly associated with cancer. It emerges that this protein 
also regulates another stage of the cell cycle. 

Just as a team of explorers needs a detailed map 
to guide them on their journey, a cell uses infor-
mation held within its DNA, and packaged into 
chromosomes, for guidance throughout its life. 
It is therefore crucial that genetic information 
is faithfully maintained for the lifetime of the 
cell and of its progeny. The tumour-suppressor 
protein retinoblastoma is known for its role in 
regulating DNA replication and so maintaining 
genome stability1,2. Three papers3–5 published 
in Genes & Development now also implicate 
this protein in mediating proper distribution of 
genetic information between the two daughter 
cells during mitotic cell division. 

Once a cell divides, its genetic information 
instructs it what shape to assume, what func-
tions to perform, how quickly to proliferate 
again or whether to stop dividing alto-
gether. Indeed, some of the genes that 
regulate the cell-division cycle serve as 
brakes to halt the cell’s journey, allow-
ing it to differentiate and settle into 
its final tissue destination. Incorrect 
copying of the genetic instructions 
or damage to the DNA harbouring 
these instructions could lead the cell 
to the wrong destination or, worse, 
to an endless journey — a crisis that  
warrants cell death. 

Tumour-suppressor proteins stop 
cell division under such circum-
stances. For instance, the retino-
blastoma (Rb) protein — the loss of 
which can cause human eye tumours, 
as well as most other types of cancer1 — 
can stop cell proliferation by limiting 
the expression of genes that promote 
DNA replication during the S phase 
of the cell cycle1,2 (Fig. 1). It thus puts 
a strong brake on cell division that  
is removed only when the cell has 
little chance to pass on erroneous or 
incomplete genetic instructions. 

Just as essential as faithful DNA 
replication is the accurate distribu-
tion of the replicated chromosomes 
between the two daughter cells during 
cell division. (By analogy, if members 
of the explorers’ team decide to go 
their separate ways, accurate copies of 
the map would be of little use if they 
were not equally distributed among 
the explorers.) 

Chromosomes are equally segre-
gated into the daughter cells during 
mitosis, or the M phase of the cell 

cycle (Fig. 1). There have been hints2 that Rb 
also plays a direct part in segregating chromo-
somes during mitosis, although it remained 
unclear whether mitotic defects associated 
with loss of this protein were an indirect con-
sequence of errors committed during the pre-
ceding S phase. Could it be that Rb mediates 
both accurate and timely DNA replication and 
proper distribution of chromosomes in mito-
sis? The answer is yes, according to the three 
new studies3–5. 

For chromosomes to physically move 
through the viscous environment of the cell, 
they must condense into relatively small and 
stiff shapes. Just like folding a map into a com-
pact form allows its easy storage and protects 
it against damage during travel, presumably 
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Figure 1 | Retinoblastoma and the cell cycle. Dividing cells undergo 
cycles of division, in which the S phase (when DNA replicates) is 
separated from the M phase (when mitotic cell division occurs) by 
two gap phases, G1 and G2. The role of the retinoblastoma (Rb) 
protein in regulating the transition from the G1 to the S phase is well 
established. Three studies3–5 now implicate this protein in mediating 
chromosome dynamics during the M phase. Outcomes of Rb 
deficiency during mitosis include chromosome gain, chromosome 
loss and chromosome breakage. 
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Boolean case study - the 
mammalian cell cycle
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Two-module cell cycle model
A  Attractor landscape of the uncoupled network B  Attractor landscape of the coupled network
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How do the cell cycle switches work together?
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Can we quantify the modularity of global 
dynamics? 

Attractor Modularity Measure (AMM)

• Randomized links between modules

AMM
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• for the 2-module cell cycle:

AM2,PhaseSW = 0.87
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Defining the Attractor Modularity Measure AMM. The first step towards defining the AMM measure 
is to map every global phenotype of the multi-switch system onto the most similar combination of individual 
switch-phenotypes (Fig.ft6A). To this end, similarity is defined as the normalized overlap between each phe-
notype of an isolated switch m, and the ON/OFF state of its constituent molecules in the global attractor state 
(Supplemental Fig. S11). By extension, we map cyclic global phenotypes or open state-sequences onto a matched 
series of switch-phenotype combinations (Cell Cycle on Fig.ft6A). In this case, the overlap of a global limit cycle 
with a phenotype of switch m is defined by the highest overlap the cycle achieves (namely, the closest the global 
rhythmic behavior of the system gets to a particular switch-level phenotype; fully saturated lines on Fig.ft6A). 
For a precise definition of overlap between an arbitrary global state-sequence and arbitrary switch-phenotypes, 
including cyclic switch-behaviors, see Supplementary Methods 3 and Supplementary Figs S11–S15).

In order to claim that a global phenotype is a switch-phenotype combination, this global phenotype has to 
have high overlap with the attractor states of every switch. If the global phenotype is a cyclic behavior, we expect 
it to either avoid the basin of certain switch-phenotypes altogether, or implement them precisely at some point 
along the cyclic trajectory. We quantify this via the Attractor Modularity AMi,m of global phenotype i with respect 
to switch m. AMi,m is defined as:
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where Qi
c represents the ith global attractor (phenotype), and Qj

m represents the jth attractor of switch m. Their over-
lap, O Q Q( , )i

c
j
m , is based on similarity of switch-node expression states between Qi

c and Qj
m, generalized to cover 

comparisons between arbitrary global and switch-level limit cycles, as described in Supplementary Methods 3.
AMi,m severely penalizes global states that are significantly different from all switch-phenotypes of m. Thus, its 

lowest value 0 is reached when the overlap between Qi
c and Qj

m is 1/2, representing a global attractor i in which the 
switch m is poised halfway between two completely different phenotypes: the opposite of dynamical modularity. 
The AMmax( ,1/2)i m,  is necessarily because of the way we defined overlap between limit cycle switch-phenotypes 
and global cycles in Supplementary Methods 3.2. If, for example, a global cycle executes the steps of a switch limit 
cycle with relatively high pairwise state-overlap but in a scrambled order, it is possible for O Q Q( , )i

c
j
m  to be 

nonzero but below 1/2. We consider these situations far from dynamically modular, and treat them as worst-case 
scenarios with AMi,m =  0. 

The attractor modularity of the entire coupled system with respect to the switch m is defined as:
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where qc is the number of global (coupled) attractors. Thus, AMm is constructed to be very low if any of the global 
attractors are significantly different from all phenotypes of switch m.

Lastly, we define the global Attractor Modularity Measure as the geometric mean of attractor modularity across 
the switches, = ∏AMM AM( )m m

M1/  (M =  number of switches). High AMM requires simultaneously high AMm 
for every switch.

Defining the Switch Stability Measure SSM. In order to claim that the coupled system’s dynamics rep-
licates a switch-phenotype, two conditions have to be met. First, there needs to be at least one coupled attractor 
that maps onto this switch-attractor. We test this while calculating AMM, in that we compute the overlap 
O Q Q( , )i

c
j
m  between every coupled attractor i and switch-m attractor j. Second, it is important that even if a cou-

pled Qi
c attractor exists that overlaps with switch-m attractor j, its basin (and thus the overall stability of this global 

phenotype) not be overly small. In order to quantify this, we first employ noisy Boolean dynamics to calculate (or 
sample) the long-term probability Π s( ) of finding the coupled system in any state s in the presence of gate error pE 
(see Methods MBOL_noise). Next, we estimate the size of the state space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state (Fig.ft7A). For fixed-point attractors, 
this equals the overall probability of finding the system somewhere in their basin. To generalize it to limit-cycles, 
we map each state s of the coupled system onto individual attractor states →sk

c i by starting the coupled system in 
initial state s, and updating it in the absence of noise until an attractor state of i is reached for the first time: →sk

c i, 
the kth state of attractor i. For each coupled attractor state →sk

c i we then sum up the probability Π s( ) of all states 
that map to →sk

c i: = ∑ Π→ → →"W k s( ) ( )i s sk
c i . As we wish to approximate the overall probability of finding the 

coupled system in a state that maps onto switch-m attractor j, we go through each coupled attractor i for which 
>O Q Q( , ) 0i

c
j
m  and sum up the Wi(k) probabilities along the (full) flyby segment →Sj

D m mapped into switch-m 
attractor j (for definition of →Sj

D m, see Supplementary Methods 3). Stated differently, we sum all Wi(k) for all rows 
k of the mapping matrix →ID m (Supplementary Figs S13 and S14) for which there are nonzero elements in any of 
the columns that correspond to switch-m attractor j:
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Lastly, we do not expect this overall probability →PSm j
C  to be larger than the stability of phenotype j in the iso-

lated switch m. Consequently, we compute a similar overall probability →PSm j
U for the composite system made of 
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•  1 robust global state!

What types of random networks 
do better than cell cycle?



A biological network shouldn’t “loose” a 
regulatory switch-phenotype!
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A  I. Principle of Robust Coordination
Dynamical Modules at all scales are robust 
switches with minimal number of radically 

different phenotypes.

DM States

the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part

A

B

C

Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).

R E P O R T S

30 AUGUST 2002 VOL 297 SCIENCE www.sciencemag.org1552

a
b

c
d
e

f
g

h
i

• few
• different on every scale

β
γ

α

Multi-module 
DM states

• few
• different

B  II. Principle of Modular Dynamics
Phenotypes of multi-module regulatory 

circuits are combinations of module 
phenotypes.
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the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part
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C

Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part

A
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C

Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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  Switch Stability Measure

•   Switch Stability of Module m 

•   Stability of phenotype (attractor) j of Module m

                     =  part of attractor basin i that flows directly into its kth 
attractor state (provided it maps onto Module attractor j ).
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6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
O(Γi→ j

c ,Qj
m )  between a non-empty flyby sequence Si→ j

c

 within the coupled attractor Qi
c , and a 

subset of module-m attractors Qj
m . Based on this measure, the overlap between coupled attractor 

Qi
c  and module-m attractor Qj

m is defined as O(Oi
c,Qj

m ) = O(Γi→ j
c ,Qj

m )
all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 14 
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states sk
c:i  by starting the coupled system in initial state s, and updating it in the absence of noise 

until an attractor state of i is reached for the first time: sk
c:i , the kth state of attractor i. For each 

coupled attractor state sk
c:i  we then sum up the probability Π(s) of all states that map to sk

c:i : 

Wi (k) = Π(s)
s→sk

c:i∑ . As we wish to approximate the overall probability of finding the coupled 

system in a state that maps onto module-m attractor j, we go through each coupled attractor i for 
which O(Qi

c,Qj
m ) ≠ 0 , and sum up the Wi (k)  probabilities along the (full) flyby segment Si→ j

c  
mapped into module-m attractor j (stated differently, for all row-indices of the mapping matrix 
ℑc:i→m for which there are nonzero elements in any of the columns that correspond to module-m 
attractor j): PSC

m: j = Wi (k)
{k:ℑc:i→m (k, j )#0}${i:O(Qi

c ,Qj
m )#0}$ . Lastly, we do not expect this overall 

probability PSC
m: j  to be larger than the stability of phenotype j in the isolated module m. 

Consequently, we compute a similar overall probability PSU
m: j  for the composite system made of 

all M modules, but in which none of the inter-module links are present. The final value of PSC
m: j

is then computed as  
PSm: j =min(PSC

m: j / PSU
m: j,1) . 

 
8. Rules for uncoupling a complex network into arbitrary modules. In order to measure 
dynamical modularity in randomized versions of the cell cycle network, we need general rules 
for uncoupling a network into arbitrarily chosen module fragments. In addition to removing links 
between modules, we need to define how Boolean gates loose some of their inputs while 
preserving the dynamics driven by the remaining intra-module inputs (as closely as possible).  
 
Every time an input link is removed from a Boolean gate, the number of its outputs drops by 
half. Naturally, the question is which half of the original gate should be kept? We wish to 
preserve as much of the intra-module regulation of each node as possible, and thus will attempt 
to preferentially remove canalizing influences (the most homogeneous output parts). To this end, 
for every combination of input values among the links marked for removal, we calculate the 
entropy of the Boolean gate fragment left when their inputs are fixed. The entropy of a Boolean 
gate is defined as HG = – p·log(p) – (1–p)·log(1–p). In addition to the entropy, we also test 
whether all remaining inputs of this gate fragment are functional (i.e., there exists at least one 
value combination among the other links for which an input in question dictates the output). We 
then choose the gate fragment with the highest entropy among the ones that preserve the function 
of all remaining intra-module links as the new, reduced gate. If no such gate fragment exists, we 
simply choose the largest entropy fragment (in case of two equivalent choices, we default to the 
first one found). The input-value commination among the removed gates that generated the 
chosen gate fragment will be referred to the non-canalizing inter-module inputs. 
 
9. Randomization methods. 
10. Coarse-graining the state transition graph of a multi-module system. 
 
Table S1, restriction switch 
Table S2, phase switch 
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all M modules, but in which none of the inter-module links are present. The final value of PSC
m: j

is then computed as  
PSm: j =min(PSC

m: j / PSU
m: j,1) . 

 
8. Rules for uncoupling a complex network into arbitrary modules. In order to measure 
dynamical modularity in randomized versions of the cell cycle network, we need general rules 
for uncoupling a network into arbitrarily chosen module fragments. In addition to removing links 
between modules, we need to define how Boolean gates loose some of their inputs while 
preserving the dynamics driven by the remaining intra-module inputs (as closely as possible).  
 
Every time an input link is removed from a Boolean gate, the number of its outputs drops by 
half. Naturally, the question is which half of the original gate should be kept? We wish to 
preserve as much of the intra-module regulation of each node as possible, and thus will attempt 
to preferentially remove canalizing influences (the most homogeneous output parts). To this end, 
for every combination of input values among the links marked for removal, we calculate the 
entropy of the Boolean gate fragment left when their inputs are fixed. The entropy of a Boolean 
gate is defined as HG = – p·log(p) – (1–p)·log(1–p). In addition to the entropy, we also test 
whether all remaining inputs of this gate fragment are functional (i.e., there exists at least one 
value combination among the other links for which an input in question dictates the output). We 
then choose the gate fragment with the highest entropy among the ones that preserve the function 
of all remaining intra-module links as the new, reduced gate. If no such gate fragment exists, we 
simply choose the largest entropy fragment (in case of two equivalent choices, we default to the 
first one found). The input-value commination among the removed gates that generated the 
chosen gate fragment will be referred to the non-canalizing inter-module inputs. 
 
9. Randomization methods. 
10. Coarse-graining the state transition graph of a multi-module system. 
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Table S2, phase switch 
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coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
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The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 
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, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
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, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 14 

 
 

 

O(Γi→ j
c ,Qj

m ) = O(sk
c:i → sk+1

c:i ,Qj
m )

k
⋅C(Γi→ j

c ,Qj
m ).  

 
6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
O(Γi→ j

c ,Qj
m )  between a non-empty flyby sequence Si→ j

c

 within the coupled attractor Qi
c , and a 

subset of module-m attractors Qj
m . Based on this measure, the overlap between coupled attractor 

Qi
c  and module-m attractor Qj

m is defined as O(Oi
c,Qj

m ) = O(Γi→ j
c ,Qj

m )
all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 

15 

 
 

 

states sk
c:i  by starting the coupled system in initial state s, and updating it in the absence of noise 

until an attractor state of i is reached for the first time: sk
c:i , the kth state of attractor i. For each 

coupled attractor state sk
c:i  we then sum up the probability Π(s) of all states that map to sk

c:i : 

Wi (k) = Π(s)
s→sk

c:i∑ . As we wish to approximate the overall probability of finding the coupled 

system in a state that maps onto module-m attractor j, we go through each coupled attractor i for 
which O(Qi

c,Qj
m ) ≠ 0 , and sum up the Wi (k)  probabilities along the (full) flyby segment Si→ j

c  
mapped into module-m attractor j (stated differently, for all row-indices of the mapping matrix 
ℑc:i→m for which there are nonzero elements in any of the columns that correspond to module-m 
attractor j): PSC

m: j = Wi (k)
{k:ℑc:i→m (k, j )≠0}∑{i:O(Qi

c ,Qj
m )≠0}∑ . Lastly, we do not expect this overall 

probability PSC
m: j  to be larger than the stability of phenotype j in the isolated module m. 

Consequently, we compute a similar overall probability PSU
m: j  for the composite system made of 

all M modules, but in which none of the inter-module links are present. The final value of PSC
m: j

is then computed as  
PSm: j =min(PSC

m: j / PSU
m: j,1) . 

 
8. Rules for uncoupling a complex network into arbitrary modules. In order to measure 
dynamical modularity in randomized versions of the cell cycle network, we need general rules 
for uncoupling a network into arbitrarily chosen module fragments. In addition to removing links 
between modules, we need to define how Boolean gates loose some of their inputs while 
preserving the dynamics driven by the remaining intra-module inputs (as closely as possible).  
 
Every time an input link is removed from a Boolean gate, the number of its outputs drops by 
half. Naturally, the question is which half of the original gate should be kept? We wish to 
preserve as much of the intra-module regulation of each node as possible, and thus will attempt 
to preferentially remove canalizing influences (the most homogeneous output parts). To this end, 
for every combination of input values among the links marked for removal, we calculate the 
entropy of the Boolean gate fragment left when their inputs are fixed. The entropy of a Boolean 
gate is defined as HG = – p·log(p) – (1–p)·log(1–p). In addition to the entropy, we also test 
whether all remaining inputs of this gate fragment are functional (i.e., there exists at least one 
value combination among the other links for which an input in question dictates the output). We 
then choose the gate fragment with the highest entropy among the ones that preserve the function 
of all remaining intra-module links as the new, reduced gate. If no such gate fragment exists, we 
simply choose the largest entropy fragment (in case of two equivalent choices, we default to the 
first one found). The input-value commination among the removed gates that generated the 
chosen gate fragment will be referred to the non-canalizing inter-module inputs. 
 
9. Randomization methods. 
10. Coarse-graining the state transition graph of a multi-module system. 
 
Table S1, restriction switch 
Table S2, phase switch 

15 

 
 

 

states sk
c:i  by starting the coupled system in initial state s, and updating it in the absence of noise 

until an attractor state of i is reached for the first time: sk
c:i , the kth state of attractor i. For each 

coupled attractor state sk
c:i  we then sum up the probability Π(s) of all states that map to sk

c:i : 

Wi (k) = Π(s)
s→sk

c:i∑ . As we wish to approximate the overall probability of finding the coupled 

system in a state that maps onto module-m attractor j, we go through each coupled attractor i for 
which O(Qi

c,Qj
m ) ≠ 0 , and sum up the Wi (k)  probabilities along the (full) flyby segment Si→ j

c  
mapped into module-m attractor j (stated differently, for all row-indices of the mapping matrix 
ℑc:i→m for which there are nonzero elements in any of the columns that correspond to module-m 
attractor j): PSC

m: j = Wi (k)
{k:ℑc:i→m (k, j )≠0}∑{i:O(Qi

c ,Qj
m )≠0}∑ . Lastly, we do not expect this overall 

probability PSC
m: j  to be larger than the stability of phenotype j in the isolated module m. 

Consequently, we compute a similar overall probability PSU
m: j  for the composite system made of 

all M modules, but in which none of the inter-module links are present. The final value of PSC
m: j

is then computed as  
PSm: j =min(PSC

m: j / PSU
m: j,1) . 

 
8. Rules for uncoupling a complex network into arbitrary modules. In order to measure 
dynamical modularity in randomized versions of the cell cycle network, we need general rules 
for uncoupling a network into arbitrarily chosen module fragments. In addition to removing links 
between modules, we need to define how Boolean gates loose some of their inputs while 
preserving the dynamics driven by the remaining intra-module inputs (as closely as possible).  
 
Every time an input link is removed from a Boolean gate, the number of its outputs drops by 
half. Naturally, the question is which half of the original gate should be kept? We wish to 
preserve as much of the intra-module regulation of each node as possible, and thus will attempt 
to preferentially remove canalizing influences (the most homogeneous output parts). To this end, 
for every combination of input values among the links marked for removal, we calculate the 
entropy of the Boolean gate fragment left when their inputs are fixed. The entropy of a Boolean 
gate is defined as HG = – p·log(p) – (1–p)·log(1–p). In addition to the entropy, we also test 
whether all remaining inputs of this gate fragment are functional (i.e., there exists at least one 
value combination among the other links for which an input in question dictates the output). We 
then choose the gate fragment with the highest entropy among the ones that preserve the function 
of all remaining intra-module links as the new, reduced gate. If no such gate fragment exists, we 
simply choose the largest entropy fragment (in case of two equivalent choices, we default to the 
first one found). The input-value commination among the removed gates that generated the 
chosen gate fragment will be referred to the non-canalizing inter-module inputs. 
 
9. Randomization methods. 
10. Coarse-graining the state transition graph of a multi-module system. 
 
Table S1, restriction switch 
Table S2, phase switch 

15 

 
 

 

states sk
c:i  by starting the coupled system in initial state s, and updating it in the absence of noise 

until an attractor state of i is reached for the first time: sk
c:i , the kth state of attractor i. For each 

coupled attractor state sk
c:i  we then sum up the probability Π(s) of all states that map to sk

c:i : 

Wi (k) = Π(s)
s→sk

c:i∑ . As we wish to approximate the overall probability of finding the coupled 

system in a state that maps onto module-m attractor j, we go through each coupled attractor i for 
which O(Qi

c,Qj
m ) ≠ 0 , and sum up the Wi (k)  probabilities along the (full) flyby segment Si→ j

c  
mapped into module-m attractor j (stated differently, for all row-indices of the mapping matrix 
ℑc:i→m for which there are nonzero elements in any of the columns that correspond to module-m 
attractor j): PSC

m: j = Wi (k)
{k:ℑc:i→m (k, j )≠0}∑{i:O(Qi

c ,Qj
m )≠0}∑ . Lastly, we do not expect this overall 

probability PSC
m: j  to be larger than the stability of phenotype j in the isolated module m. 

Consequently, we compute a similar overall probability PSU
m: j  for the composite system made of 

all M modules, but in which none of the inter-module links are present. The final value of PSC
m: j

is then computed as  
PSm: j =min(PSC

m: j / PSU
m: j,1) . 

 
8. Rules for uncoupling a complex network into arbitrary modules. In order to measure 
dynamical modularity in randomized versions of the cell cycle network, we need general rules 
for uncoupling a network into arbitrarily chosen module fragments. In addition to removing links 
between modules, we need to define how Boolean gates loose some of their inputs while 
preserving the dynamics driven by the remaining intra-module inputs (as closely as possible).  
 
Every time an input link is removed from a Boolean gate, the number of its outputs drops by 
half. Naturally, the question is which half of the original gate should be kept? We wish to 
preserve as much of the intra-module regulation of each node as possible, and thus will attempt 
to preferentially remove canalizing influences (the most homogeneous output parts). To this end, 
for every combination of input values among the links marked for removal, we calculate the 
entropy of the Boolean gate fragment left when their inputs are fixed. The entropy of a Boolean 
gate is defined as HG = – p·log(p) – (1–p)·log(1–p). In addition to the entropy, we also test 
whether all remaining inputs of this gate fragment are functional (i.e., there exists at least one 
value combination among the other links for which an input in question dictates the output). We 
then choose the gate fragment with the highest entropy among the ones that preserve the function 
of all remaining intra-module links as the new, reduced gate. If no such gate fragment exists, we 
simply choose the largest entropy fragment (in case of two equivalent choices, we default to the 
first one found). The input-value commination among the removed gates that generated the 
chosen gate fragment will be referred to the non-canalizing inter-module inputs. 
 
9. Randomization methods. 
10. Coarse-graining the state transition graph of a multi-module system. 
 
Table S1, restriction switch 
Table S2, phase switch 

15 

 
 

 

states sk
c:i  by starting the coupled system in initial state s, and updating it in the absence of noise 

until an attractor state of i is reached for the first time: sk
c:i , the kth state of attractor i. For each 

coupled attractor state sk
c:i  we then sum up the probability Π(s) of all states that map to sk

c:i : 

Wi (k) = Π(s)
s→sk

c:i∑ . As we wish to approximate the overall probability of finding the coupled 

system in a state that maps onto module-m attractor j, we go through each coupled attractor i for 
which O(Qi

c,Qj
m ) ≠ 0 , and sum up the Wi (k)  probabilities along the (full) flyby segment Si→ j

c  
mapped into module-m attractor j (stated differently, for all row-indices of the mapping matrix 
ℑc:i→m for which there are nonzero elements in any of the columns that correspond to module-m 
attractor j): PSC

m: j = Wi (k)
{k:ℑc:i→m (k, j )≠0}∑{i:O(Qi

c ,Qj
m )≠0}∑ . Lastly, we do not expect this overall 

probability PSC
m: j  to be larger than the stability of phenotype j in the isolated module m. 

Consequently, we compute a similar overall probability PSU
m: j  for the composite system made of 

all M modules, but in which none of the inter-module links are present. The final value of PSC
m: j

is then computed as  
PSm: j =min(PSC

m: j / PSU
m: j,1) . 

 
8. Rules for uncoupling a complex network into arbitrary modules. In order to measure 
dynamical modularity in randomized versions of the cell cycle network, we need general rules 
for uncoupling a network into arbitrarily chosen module fragments. In addition to removing links 
between modules, we need to define how Boolean gates loose some of their inputs while 
preserving the dynamics driven by the remaining intra-module inputs (as closely as possible).  
 
Every time an input link is removed from a Boolean gate, the number of its outputs drops by 
half. Naturally, the question is which half of the original gate should be kept? We wish to 
preserve as much of the intra-module regulation of each node as possible, and thus will attempt 
to preferentially remove canalizing influences (the most homogeneous output parts). To this end, 
for every combination of input values among the links marked for removal, we calculate the 
entropy of the Boolean gate fragment left when their inputs are fixed. The entropy of a Boolean 
gate is defined as HG = – p·log(p) – (1–p)·log(1–p). In addition to the entropy, we also test 
whether all remaining inputs of this gate fragment are functional (i.e., there exists at least one 
value combination among the other links for which an input in question dictates the output). We 
then choose the gate fragment with the highest entropy among the ones that preserve the function 
of all remaining intra-module links as the new, reduced gate. If no such gate fragment exists, we 
simply choose the largest entropy fragment (in case of two equivalent choices, we default to the 
first one found). The input-value commination among the removed gates that generated the 
chosen gate fragment will be referred to the non-canalizing inter-module inputs. 
 
9. Randomization methods. 
10. Coarse-graining the state transition graph of a multi-module system. 
 
Table S1, restriction switch 
Table S2, phase switch 

15 

 
 

 

states sk
c:i  by starting the coupled system in initial state s, and updating it in the absence of noise 

until an attractor state of i is reached for the first time: sk
c:i , the kth state of attractor i. For each 

coupled attractor state sk
c:i  we then sum up the probability Π(s) of all states that map to sk

c:i : 

Wi (k) = Π(s)
s→sk

c:i∑ . As we wish to approximate the overall probability of finding the coupled 

system in a state that maps onto module-m attractor j, we go through each coupled attractor i for 
which O(Qi

c,Qj
m ) ≠ 0 , and sum up the Wi (k)  probabilities along the (full) flyby segment Si→ j

c  
mapped into module-m attractor j (stated differently, for all row-indices of the mapping matrix 
ℑc:i→m for which there are nonzero elements in any of the columns that correspond to module-m 
attractor j): PSC

m: j = Wi (k)
{k:ℑc:i→m (k, j )≠0}∑{i:O(Qi

c ,Qj
m )≠0}∑ . Lastly, we do not expect this overall 

probability PSC
m: j  to be larger than the stability of phenotype j in the isolated module m. 

Consequently, we compute a similar overall probability PSU
m: j  for the composite system made of 

all M modules, but in which none of the inter-module links are present. The final value of PSC
m: j

is then computed as  
PSm: j =min(PSC

m: j / PSU
m: j,1) . 

 
8. Rules for uncoupling a complex network into arbitrary modules. In order to measure 
dynamical modularity in randomized versions of the cell cycle network, we need general rules 
for uncoupling a network into arbitrarily chosen module fragments. In addition to removing links 
between modules, we need to define how Boolean gates loose some of their inputs while 
preserving the dynamics driven by the remaining intra-module inputs (as closely as possible).  
 
Every time an input link is removed from a Boolean gate, the number of its outputs drops by 
half. Naturally, the question is which half of the original gate should be kept? We wish to 
preserve as much of the intra-module regulation of each node as possible, and thus will attempt 
to preferentially remove canalizing influences (the most homogeneous output parts). To this end, 
for every combination of input values among the links marked for removal, we calculate the 
entropy of the Boolean gate fragment left when their inputs are fixed. The entropy of a Boolean 
gate is defined as HG = – p·log(p) – (1–p)·log(1–p). In addition to the entropy, we also test 
whether all remaining inputs of this gate fragment are functional (i.e., there exists at least one 
value combination among the other links for which an input in question dictates the output). We 
then choose the gate fragment with the highest entropy among the ones that preserve the function 
of all remaining intra-module links as the new, reduced gate. If no such gate fragment exists, we 
simply choose the largest entropy fragment (in case of two equivalent choices, we default to the 
first one found). The input-value commination among the removed gates that generated the 
chosen gate fragment will be referred to the non-canalizing inter-module inputs. 
 
9. Randomization methods. 
10. Coarse-graining the state transition graph of a multi-module system. 
 
Table S1, restriction switch 
Table S2, phase switch 

B  Attractor Modularity Measure (AMM)

Module attractors 
(Phase Switch)

Coupled 
attractors

AMPSM = 0.92

1

2

3

1

2

3

AM1,PSM = 1

AM2,PSM = 0.91

AM3,PSM = 0.85

1

2

3

4

5

6

7

8

9

10

11

12

H1,PSM:1 = 0

H2,PSM:2 =
 1 

H
3,PSM:1 = 1 

H3,PSM:2 = 2

H3,PSM:3 = 2 

AMM = 0.91

m
ax

im
um

 m
od

ul
e 

st
at

e 
ov

er
la

p
av

er
ag

e 
of

 b
es

t o
ve

rl
ap

s 
fo

r 
ea

ch
 

m
od

ul
e-

st
at

e 
vi

si
te

d 
by

 c
yc

le

 Attractor Modularity Measure
  

• Attractor Modularity

                                     =  attractor i of the multi-module circuit
     =  # of Module m attractors
     = normalized overlap between attractors
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m )

k
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c ,Qj
m ).  

 
6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
O(Γi→ j

c ,Qj
m )  between a non-empty flyby sequence Si→ j

c

 within the coupled attractor Qi
c , and a 

subset of module-m attractors Qj
m . Based on this measure, the overlap between coupled attractor 

Qi
c  and module-m attractor Qj

m is defined as O(Oi
c,Qj

m ) = O(Γi→ j
c ,Qj

m )
all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 
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measure to compare limit cycles is required. Second, a method is needed for working with global 
limit-cycles that pass through multiple module phenotypes (attractors). As the cell cycle example 
illustrates (Fig. 1E), it is possible for Qi

c  to be a limit cycle even though all module attractors are 
fixed-points. In this example, the coupled cell cycle attractor does not simply map onto a single 
module-level attractor. Rather, it is an emergent rhythm driven by influences between modules: 
the Restriction Switch in its past-RP state toggles the Phase Switch from G0/G1 into G2 and 
then M, which, in turn, toggles the Restriction Switch back to its before-RP state. The presence 
of growth factors flips the Restriction Switch again, driving a cyclic behavior.  

We argue that a meaningful attractor modularity score AMm quantifies how close the coupled 
cycle Qi

c passes to each of the module attractor states it toggles through. Consequently, 

measuring AMm requires us to: 1) find continuous segments along the coupled limit-cycle Qi
c  

that are closest to module attractor Qj
m (termed the flyby of the coupled attractor i near the 

module attractor j), 2) define an overlap measure between module attractor Qj
m  and these 

continuous segments of limit-cycle Qi
c , and 3) combine these overlaps across all coupled and 

module-m attractors (i and j values) into a single AMm attractor modularity score (Fig. S3B).  
 
Prior to describing our general solution to each of these requirements (see 6.1-3), we will detail 
the simplest scenario for calculating AMm. In this scenario, all attractors of the coupled dynamics 
as well as those of module m are fixed-points. Ideally, each coupled attractor state Qi

c  has high 
overlap with one of the attractor states of module m. We thus pick the largest normalized overlap 
across all module-level attractors: AMi:m =max{O(s1

c:i, z1
m: j )} j , where

 
Qi

c = {s1
c:i | s1

c:i =Gc (s1
c:i )}  and 

Qj
m = {z1

m: j | z1
m: j =Gm (z1

m: j )} are fixed-points of the coupled system and module m, respectively. 
AMi,m is a measure of the modularity of global attractor i with respect to module m. For example, 
the red line on Fig. 3A between global attractor G2 Arrest and Phase Switch Module attractor G2 
represents the maximum overlap for global G2 Arrest: AMG2Arrest,PhaseSwitch = 0.909. As we need 
all coupled attractors to have high AMi,m overlap in order to satisfy the first principle, AMm is 

defined as the geometric mean AMm = AMi,mi∏( )
1/qc

 , where qc is the number of coupled system 

attractors. Finally, the coupled system is characterized by the attractor modularity measure 
AMM = (∏m AMm)1/M. 

6.1. Flyby of the coupled limit-cycle Qi
c  near module attractor Qj

m . In order to identify the 

continuous segment(s) of the limit-cycle Qi
c that fall into the neighborhood of module attractor 

Qj
m , we first calculate the normalized overlap O(sk

c:i, zl
m: j )  between each state sk

c:i along the 

coupled cycle i and state zl
m: j of module-m attractor j. Next, we map each coupled cycle state sk

c:i  

onto a list of module attractor states J c:i→m (k)  for which the normalized overlap between sk
c:i  and 

all module-m attractor states (regardless of which module attractor j they belong to) is maximal 
(black and red links on Fig. 3A, black links on Fig. S3B): 
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measure to compare limit cycles is required. Second, a method is needed for working with global 
limit-cycles that pass through multiple module phenotypes (attractors). As the cell cycle example 
illustrates (Fig. 1E), it is possible for Qi

c  to be a limit cycle even though all module attractors are 
fixed-points. In this example, the coupled cell cycle attractor does not simply map onto a single 
module-level attractor. Rather, it is an emergent rhythm driven by influences between modules: 
the Restriction Switch in its past-RP state toggles the Phase Switch from G0/G1 into G2 and 
then M, which, in turn, toggles the Restriction Switch back to its before-RP state. The presence 
of growth factors flips the Restriction Switch again, driving a cyclic behavior.  

We argue that a meaningful attractor modularity score AMm quantifies how close the coupled 
cycle Qi

c passes to each of the module attractor states it toggles through. Consequently, 

measuring AMm requires us to: 1) find continuous segments along the coupled limit-cycle Qi
c  

that are closest to module attractor Qj
m (termed the flyby of the coupled attractor i near the 

module attractor j), 2) define an overlap measure between module attractor Qj
m  and these 

continuous segments of limit-cycle Qi
c , and 3) combine these overlaps across all coupled and 

module-m attractors (i and j values) into a single AMm attractor modularity score (Fig. S3B).  
 
Prior to describing our general solution to each of these requirements (see 6.1-3), we will detail 
the simplest scenario for calculating AMm. In this scenario, all attractors of the coupled dynamics 
as well as those of module m are fixed-points. Ideally, each coupled attractor state Qi

c  has high 
overlap with one of the attractor states of module m. We thus pick the largest normalized overlap 
across all module-level attractors: AMi:m =max{O(s1

c:i, z1
m: j )} j , where

 
Qi

c = {s1
c:i | s1

c:i =Gc (s1
c:i )}  and 

Qj
m = {z1

m: j | z1
m: j =Gm (z1

m: j )} are fixed-points of the coupled system and module m, respectively. 
AMi,m is a measure of the modularity of global attractor i with respect to module m. For example, 
the red line on Fig. 3A between global attractor G2 Arrest and Phase Switch Module attractor G2 
represents the maximum overlap for global G2 Arrest: AMG2Arrest,PhaseSwitch = 0.909. As we need 
all coupled attractors to have high AMi,m overlap in order to satisfy the first principle, AMm is 

defined as the geometric mean AMm = AMi,mi∏( )
1/qc

 , where qc is the number of coupled system 

attractors. Finally, the coupled system is characterized by the attractor modularity measure 
AMM = (∏m AMm)1/M. 

6.1. Flyby of the coupled limit-cycle Qi
c  near module attractor Qj

m . In order to identify the 

continuous segment(s) of the limit-cycle Qi
c that fall into the neighborhood of module attractor 

Qj
m , we first calculate the normalized overlap O(sk

c:i, zl
m: j )  between each state sk

c:i along the 

coupled cycle i and state zl
m: j of module-m attractor j. Next, we map each coupled cycle state sk

c:i  

onto a list of module attractor states J c:i→m (k)  for which the normalized overlap between sk
c:i  and 

all module-m attractor states (regardless of which module attractor j they belong to) is maximal 
(black and red links on Fig. 3A, black links on Fig. S3B): 
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(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
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where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
Hamming distance can be written as: 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )" qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 
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The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 
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N

max 2
q(q−1)

| xi
p − xi

r |
i=1

N

∑
r=p+1

q

∑
p=1

q

∑
#

$
%%

&

'
((=

1
N

max 2
q(q−1)

| xi |
i=1

N

∑
#

$
%

&

'
( ≤

2
q(q−1)

max | xi |( )i
 ,  

where | xi |  = | xi
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q

∑
p=1

q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  
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m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 
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p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 

MQm =
h(Qi

m,Qj
m )

i≠ j
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The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 
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r |
r=p+1

q

∑
p=1

q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi
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qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 

MQm =
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m )
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The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 
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where | xi |  = | xi
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q

∑
p=1

q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 

MQm =
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The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 
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where | xi |  = | xi
p − xi

r |
r=p+1

q

∑
p=1

q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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  Switch Stability Measure

•   Switch Stability of Module m 

•   Stability of phenotype (attractor) j of Module m

                     =  part of attractor basin i that flows directly into its kth 
attractor state (provided it maps onto Module attractor j ).
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O(Γi→ j
c ,Qj

m ) = O(sk
c:i → sk+1

c:i ,Qj
m )

k
⋅C(Γi→ j

c ,Qj
m ).  

 
6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
O(Γi→ j

c ,Qj
m )  between a non-empty flyby sequence Si→ j

c

 within the coupled attractor Qi
c , and a 

subset of module-m attractors Qj
m . Based on this measure, the overlap between coupled attractor 

Qi
c  and module-m attractor Qj

m is defined as O(Oi
c,Qj

m ) = O(Γi→ j
c ,Qj

m )
all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
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attractors, this equals the overall probability of finding the system somewhere in its basin. To 
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states sk
c:i  by starting the coupled system in initial state s, and updating it in the absence of noise 

until an attractor state of i is reached for the first time: sk
c:i , the kth state of attractor i. For each 
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m: j  to be larger than the stability of phenotype j in the isolated module m. 

Consequently, we compute a similar overall probability PSU
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all M modules, but in which none of the inter-module links are present. The final value of PSC
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is then computed as  
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8. Rules for uncoupling a complex network into arbitrary modules. In order to measure 
dynamical modularity in randomized versions of the cell cycle network, we need general rules 
for uncoupling a network into arbitrarily chosen module fragments. In addition to removing links 
between modules, we need to define how Boolean gates loose some of their inputs while 
preserving the dynamics driven by the remaining intra-module inputs (as closely as possible).  
 
Every time an input link is removed from a Boolean gate, the number of its outputs drops by 
half. Naturally, the question is which half of the original gate should be kept? We wish to 
preserve as much of the intra-module regulation of each node as possible, and thus will attempt 
to preferentially remove canalizing influences (the most homogeneous output parts). To this end, 
for every combination of input values among the links marked for removal, we calculate the 
entropy of the Boolean gate fragment left when their inputs are fixed. The entropy of a Boolean 
gate is defined as HG = – p·log(p) – (1–p)·log(1–p). In addition to the entropy, we also test 
whether all remaining inputs of this gate fragment are functional (i.e., there exists at least one 
value combination among the other links for which an input in question dictates the output). We 
then choose the gate fragment with the highest entropy among the ones that preserve the function 
of all remaining intra-module links as the new, reduced gate. If no such gate fragment exists, we 
simply choose the largest entropy fragment (in case of two equivalent choices, we default to the 
first one found). The input-value commination among the removed gates that generated the 
chosen gate fragment will be referred to the non-canalizing inter-module inputs. 
 
9. Randomization methods. 
10. Coarse-graining the state transition graph of a multi-module system. 
 
Table S1, restriction switch 
Table S2, phase switch 
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attractor state (provided it maps onto Module attractor j ).
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(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
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 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 14 
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attractor state (provided it maps onto Module attractor j ).
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6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
O(Γi→ j

c ,Qj
m )  between a non-empty flyby sequence Si→ j

c

 within the coupled attractor Qi
c , and a 

subset of module-m attractors Qj
m . Based on this measure, the overlap between coupled attractor 

Qi
c  and module-m attractor Qj

m is defined as O(Oi
c,Qj

m ) = O(Γi→ j
c ,Qj

m )
all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 14 
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 Attractor Modularity Measure
  

• Attractor Modularity

                                     =  attractor i of the multi-module circuit
     =  # of Module m attractors
     = normalized overlap between attractors
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6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
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Qi
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m is defined as O(Oi
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m ) = O(Γi→ j
c ,Qj
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all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 
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measure to compare limit cycles is required. Second, a method is needed for working with global 
limit-cycles that pass through multiple module phenotypes (attractors). As the cell cycle example 
illustrates (Fig. 1E), it is possible for Qi

c  to be a limit cycle even though all module attractors are 
fixed-points. In this example, the coupled cell cycle attractor does not simply map onto a single 
module-level attractor. Rather, it is an emergent rhythm driven by influences between modules: 
the Restriction Switch in its past-RP state toggles the Phase Switch from G0/G1 into G2 and 
then M, which, in turn, toggles the Restriction Switch back to its before-RP state. The presence 
of growth factors flips the Restriction Switch again, driving a cyclic behavior.  

We argue that a meaningful attractor modularity score AMm quantifies how close the coupled 
cycle Qi

c passes to each of the module attractor states it toggles through. Consequently, 

measuring AMm requires us to: 1) find continuous segments along the coupled limit-cycle Qi
c  

that are closest to module attractor Qj
m (termed the flyby of the coupled attractor i near the 

module attractor j), 2) define an overlap measure between module attractor Qj
m  and these 

continuous segments of limit-cycle Qi
c , and 3) combine these overlaps across all coupled and 

module-m attractors (i and j values) into a single AMm attractor modularity score (Fig. S3B).  
 
Prior to describing our general solution to each of these requirements (see 6.1-3), we will detail 
the simplest scenario for calculating AMm. In this scenario, all attractors of the coupled dynamics 
as well as those of module m are fixed-points. Ideally, each coupled attractor state Qi

c  has high 
overlap with one of the attractor states of module m. We thus pick the largest normalized overlap 
across all module-level attractors: AMi:m =max{O(s1

c:i, z1
m: j )} j , where

 
Qi

c = {s1
c:i | s1

c:i =Gc (s1
c:i )}  and 

Qj
m = {z1

m: j | z1
m: j =Gm (z1

m: j )} are fixed-points of the coupled system and module m, respectively. 
AMi,m is a measure of the modularity of global attractor i with respect to module m. For example, 
the red line on Fig. 3A between global attractor G2 Arrest and Phase Switch Module attractor G2 
represents the maximum overlap for global G2 Arrest: AMG2Arrest,PhaseSwitch = 0.909. As we need 
all coupled attractors to have high AMi,m overlap in order to satisfy the first principle, AMm is 

defined as the geometric mean AMm = AMi,mi∏( )
1/qc

 , where qc is the number of coupled system 

attractors. Finally, the coupled system is characterized by the attractor modularity measure 
AMM = (∏m AMm)1/M. 

6.1. Flyby of the coupled limit-cycle Qi
c  near module attractor Qj

m . In order to identify the 

continuous segment(s) of the limit-cycle Qi
c that fall into the neighborhood of module attractor 

Qj
m , we first calculate the normalized overlap O(sk

c:i, zl
m: j )  between each state sk

c:i along the 

coupled cycle i and state zl
m: j of module-m attractor j. Next, we map each coupled cycle state sk

c:i  

onto a list of module attractor states J c:i→m (k)  for which the normalized overlap between sk
c:i  and 

all module-m attractor states (regardless of which module attractor j they belong to) is maximal 
(black and red links on Fig. 3A, black links on Fig. S3B): 
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module-level attractor. Rather, it is an emergent rhythm driven by influences between modules: 
the Restriction Switch in its past-RP state toggles the Phase Switch from G0/G1 into G2 and 
then M, which, in turn, toggles the Restriction Switch back to its before-RP state. The presence 
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We argue that a meaningful attractor modularity score AMm quantifies how close the coupled 
cycle Qi

c passes to each of the module attractor states it toggles through. Consequently, 

measuring AMm requires us to: 1) find continuous segments along the coupled limit-cycle Qi
c  

that are closest to module attractor Qj
m (termed the flyby of the coupled attractor i near the 

module attractor j), 2) define an overlap measure between module attractor Qj
m  and these 

continuous segments of limit-cycle Qi
c , and 3) combine these overlaps across all coupled and 

module-m attractors (i and j values) into a single AMm attractor modularity score (Fig. S3B).  
 
Prior to describing our general solution to each of these requirements (see 6.1-3), we will detail 
the simplest scenario for calculating AMm. In this scenario, all attractors of the coupled dynamics 
as well as those of module m are fixed-points. Ideally, each coupled attractor state Qi

c  has high 
overlap with one of the attractor states of module m. We thus pick the largest normalized overlap 
across all module-level attractors: AMi:m =max{O(s1

c:i, z1
m: j )} j , where

 
Qi

c = {s1
c:i | s1

c:i =Gc (s1
c:i )}  and 

Qj
m = {z1

m: j | z1
m: j =Gm (z1

m: j )} are fixed-points of the coupled system and module m, respectively. 
AMi,m is a measure of the modularity of global attractor i with respect to module m. For example, 
the red line on Fig. 3A between global attractor G2 Arrest and Phase Switch Module attractor G2 
represents the maximum overlap for global G2 Arrest: AMG2Arrest,PhaseSwitch = 0.909. As we need 
all coupled attractors to have high AMi,m overlap in order to satisfy the first principle, AMm is 

defined as the geometric mean AMm = AMi,mi∏( )
1/qc

 , where qc is the number of coupled system 

attractors. Finally, the coupled system is characterized by the attractor modularity measure 
AMM = (∏m AMm)1/M. 

6.1. Flyby of the coupled limit-cycle Qi
c  near module attractor Qj

m . In order to identify the 

continuous segment(s) of the limit-cycle Qi
c that fall into the neighborhood of module attractor 

Qj
m , we first calculate the normalized overlap O(sk

c:i, zl
m: j )  between each state sk

c:i along the 

coupled cycle i and state zl
m: j of module-m attractor j. Next, we map each coupled cycle state sk

c:i  

onto a list of module attractor states J c:i→m (k)  for which the normalized overlap between sk
c:i  and 

all module-m attractor states (regardless of which module attractor j they belong to) is maximal 
(black and red links on Fig. 3A, black links on Fig. S3B): 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )" qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 

MQm =
h(Qi

m,Qj
m )

i≠ j
/ MQmax (qm )   if qm >1 

                     0                      if qm =1
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The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 

MQmax (q) = 1
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where | xi |  = | xi
p − xi

r |
r=p+1

q

∑
p=1

q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
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High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
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is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
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m ) = h(zl
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j )
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c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 
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The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 
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p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
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as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
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c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 
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p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
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where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm
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where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  
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Next, we define the a module quality measure, MQ, as the ratio between the average of 
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m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 
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| xi |  represents the number of bit-pairs with different values inside the binary array 
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1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
Hamming distance can be written as: 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  
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   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
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m )  across all attractor pairs of the module, and the maximum average Hamming distance 
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| xi |  represents the number of bit-pairs with different values inside the binary array 
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2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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• Switch Phenotype Stability:

Figure 4
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  Switch Stability Measure

•   Switch Stability of Module m 

•   Stability of phenotype (attractor) j of Module m

                     =  part of attractor basin i that flows directly into its kth 
attractor state (provided it maps onto Module attractor j ).
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O(Γi→ j
c ,Qj

m ) = O(sk
c:i → sk+1

c:i ,Qj
m )

k
⋅C(Γi→ j

c ,Qj
m ).  

 
6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
O(Γi→ j

c ,Qj
m )  between a non-empty flyby sequence Si→ j

c

 within the coupled attractor Qi
c , and a 

subset of module-m attractors Qj
m . Based on this measure, the overlap between coupled attractor 

Qi
c  and module-m attractor Qj

m is defined as O(Oi
c,Qj

m ) = O(Γi→ j
c ,Qj

m )
all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 14 
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states sk
c:i  by starting the coupled system in initial state s, and updating it in the absence of noise 

until an attractor state of i is reached for the first time: sk
c:i , the kth state of attractor i. For each 

coupled attractor state sk
c:i  we then sum up the probability Π(s) of all states that map to sk

c:i : 

Wi (k) = Π(s)
s→sk

c:i∑ . As we wish to approximate the overall probability of finding the coupled 

system in a state that maps onto module-m attractor j, we go through each coupled attractor i for 
which O(Qi

c,Qj
m ) ≠ 0 , and sum up the Wi (k)  probabilities along the (full) flyby segment Si→ j

c  
mapped into module-m attractor j (stated differently, for all row-indices of the mapping matrix 
ℑc:i→m for which there are nonzero elements in any of the columns that correspond to module-m 
attractor j): PSC

m: j = Wi (k)
{k:ℑc:i→m (k, j )≠0}∑{i:O(Qi
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attractor state (provided it maps onto Module attractor j ).
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6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
O(Γi→ j

c ,Qj
m )  between a non-empty flyby sequence Si→ j
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 within the coupled attractor Qi
c , and a 

subset of module-m attractors Qj
m . Based on this measure, the overlap between coupled attractor 

Qi
c  and module-m attractor Qj

m is defined as O(Oi
c,Qj
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c ,Qj
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all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 14 
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  Switch Stability Measure

•   Switch Stability of Module m 

•   Stability of phenotype (attractor) j of Module m

                     =  part of attractor basin i that flows directly into its kth 
attractor state (provided it maps onto Module attractor j ).
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6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
O(Γi→ j

c ,Qj
m )  between a non-empty flyby sequence Si→ j

c

 within the coupled attractor Qi
c , and a 

subset of module-m attractors Qj
m . Based on this measure, the overlap between coupled attractor 

Qi
c  and module-m attractor Qj

m is defined as O(Oi
c,Qj

m ) = O(Γi→ j
c ,Qj

m )
all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 14 
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 Attractor Modularity Measure
  

• Attractor Modularity

                                     =  attractor i of the multi-module circuit
     =  # of Module m attractors
     = normalized overlap between attractors
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c:i → sk+1

c:i ,Qj
m )

k
⋅C(Γi→ j

c ,Qj
m ).  

 
6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
O(Γi→ j

c ,Qj
m )  between a non-empty flyby sequence Si→ j

c

 within the coupled attractor Qi
c , and a 

subset of module-m attractors Qj
m . Based on this measure, the overlap between coupled attractor 

Qi
c  and module-m attractor Qj

m is defined as O(Oi
c,Qj

m ) = O(Γi→ j
c ,Qj

m )
all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 
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measure to compare limit cycles is required. Second, a method is needed for working with global 
limit-cycles that pass through multiple module phenotypes (attractors). As the cell cycle example 
illustrates (Fig. 1E), it is possible for Qi

c  to be a limit cycle even though all module attractors are 
fixed-points. In this example, the coupled cell cycle attractor does not simply map onto a single 
module-level attractor. Rather, it is an emergent rhythm driven by influences between modules: 
the Restriction Switch in its past-RP state toggles the Phase Switch from G0/G1 into G2 and 
then M, which, in turn, toggles the Restriction Switch back to its before-RP state. The presence 
of growth factors flips the Restriction Switch again, driving a cyclic behavior.  

We argue that a meaningful attractor modularity score AMm quantifies how close the coupled 
cycle Qi

c passes to each of the module attractor states it toggles through. Consequently, 

measuring AMm requires us to: 1) find continuous segments along the coupled limit-cycle Qi
c  

that are closest to module attractor Qj
m (termed the flyby of the coupled attractor i near the 

module attractor j), 2) define an overlap measure between module attractor Qj
m  and these 

continuous segments of limit-cycle Qi
c , and 3) combine these overlaps across all coupled and 

module-m attractors (i and j values) into a single AMm attractor modularity score (Fig. S3B).  
 
Prior to describing our general solution to each of these requirements (see 6.1-3), we will detail 
the simplest scenario for calculating AMm. In this scenario, all attractors of the coupled dynamics 
as well as those of module m are fixed-points. Ideally, each coupled attractor state Qi

c  has high 
overlap with one of the attractor states of module m. We thus pick the largest normalized overlap 
across all module-level attractors: AMi:m =max{O(s1

c:i, z1
m: j )} j , where

 
Qi

c = {s1
c:i | s1

c:i =Gc (s1
c:i )}  and 

Qj
m = {z1

m: j | z1
m: j =Gm (z1

m: j )} are fixed-points of the coupled system and module m, respectively. 
AMi,m is a measure of the modularity of global attractor i with respect to module m. For example, 
the red line on Fig. 3A between global attractor G2 Arrest and Phase Switch Module attractor G2 
represents the maximum overlap for global G2 Arrest: AMG2Arrest,PhaseSwitch = 0.909. As we need 
all coupled attractors to have high AMi,m overlap in order to satisfy the first principle, AMm is 

defined as the geometric mean AMm = AMi,mi∏( )
1/qc

 , where qc is the number of coupled system 

attractors. Finally, the coupled system is characterized by the attractor modularity measure 
AMM = (∏m AMm)1/M. 

6.1. Flyby of the coupled limit-cycle Qi
c  near module attractor Qj

m . In order to identify the 

continuous segment(s) of the limit-cycle Qi
c that fall into the neighborhood of module attractor 

Qj
m , we first calculate the normalized overlap O(sk

c:i, zl
m: j )  between each state sk

c:i along the 

coupled cycle i and state zl
m: j of module-m attractor j. Next, we map each coupled cycle state sk

c:i  

onto a list of module attractor states J c:i→m (k)  for which the normalized overlap between sk
c:i  and 

all module-m attractor states (regardless of which module attractor j they belong to) is maximal 
(black and red links on Fig. 3A, black links on Fig. S3B): 
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Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp
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  for module m,  

h(Qi
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j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 
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can have is: 
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p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
Hamming distance can be written as: 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 
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the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  
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| xi |  represents the number of bit-pairs with different values inside the binary array 
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q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
Hamming distance can be written as: 

MQmax (q) ≤ 2
q(q−1)
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
Hamming distance can be written as: 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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  Switch Stability Measure

•   Switch Stability of Module m 

•   Stability of phenotype (attractor) j of Module m

                     =  part of attractor basin i that flows directly into its kth 
attractor state (provided it maps onto Module attractor j ).
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O(Γi→ j
c ,Qj

m ) = O(sk
c:i → sk+1

c:i ,Qj
m )

k
⋅C(Γi→ j

c ,Qj
m ).  

 
6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
O(Γi→ j

c ,Qj
m )  between a non-empty flyby sequence Si→ j

c

 within the coupled attractor Qi
c , and a 

subset of module-m attractors Qj
m . Based on this measure, the overlap between coupled attractor 

Qi
c  and module-m attractor Qj

m is defined as O(Oi
c,Qj

m ) = O(Γi→ j
c ,Qj

m )
all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 14 
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states sk
c:i  by starting the coupled system in initial state s, and updating it in the absence of noise 

until an attractor state of i is reached for the first time: sk
c:i , the kth state of attractor i. For each 

coupled attractor state sk
c:i  we then sum up the probability Π(s) of all states that map to sk

c:i : 

Wi (k) = Π(s)
s→sk

c:i∑ . As we wish to approximate the overall probability of finding the coupled 

system in a state that maps onto module-m attractor j, we go through each coupled attractor i for 
which O(Qi

c,Qj
m ) ≠ 0 , and sum up the Wi (k)  probabilities along the (full) flyby segment Si→ j

c  
mapped into module-m attractor j (stated differently, for all row-indices of the mapping matrix 
ℑc:i→m for which there are nonzero elements in any of the columns that correspond to module-m 
attractor j): PSC

m: j = Wi (k)
{k:ℑc:i→m (k, j )≠0}∑{i:O(Qi

c ,Qj
m )≠0}∑ . Lastly, we do not expect this overall 

probability PSC
m: j  to be larger than the stability of phenotype j in the isolated module m. 

Consequently, we compute a similar overall probability PSU
m: j  for the composite system made of 

all M modules, but in which none of the inter-module links are present. The final value of PSC
m: j

is then computed as  
PSm: j =min(PSC

m: j / PSU
m: j,1) . 

 
8. Rules for uncoupling a complex network into arbitrary modules. In order to measure 
dynamical modularity in randomized versions of the cell cycle network, we need general rules 
for uncoupling a network into arbitrarily chosen module fragments. In addition to removing links 
between modules, we need to define how Boolean gates loose some of their inputs while 
preserving the dynamics driven by the remaining intra-module inputs (as closely as possible).  
 
Every time an input link is removed from a Boolean gate, the number of its outputs drops by 
half. Naturally, the question is which half of the original gate should be kept? We wish to 
preserve as much of the intra-module regulation of each node as possible, and thus will attempt 
to preferentially remove canalizing influences (the most homogeneous output parts). To this end, 
for every combination of input values among the links marked for removal, we calculate the 
entropy of the Boolean gate fragment left when their inputs are fixed. The entropy of a Boolean 
gate is defined as HG = – p·log(p) – (1–p)·log(1–p). In addition to the entropy, we also test 
whether all remaining inputs of this gate fragment are functional (i.e., there exists at least one 
value combination among the other links for which an input in question dictates the output). We 
then choose the gate fragment with the highest entropy among the ones that preserve the function 
of all remaining intra-module links as the new, reduced gate. If no such gate fragment exists, we 
simply choose the largest entropy fragment (in case of two equivalent choices, we default to the 
first one found). The input-value commination among the removed gates that generated the 
chosen gate fragment will be referred to the non-canalizing inter-module inputs. 
 
9. Randomization methods. 
10. Coarse-graining the state transition graph of a multi-module system. 
 
Table S1, restriction switch 
Table S2, phase switch 
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•   Switch Stability of Module m 

•   Stability of phenotype (attractor) j of Module m

                     =  part of attractor basin i that flows directly into its kth 
attractor state (provided it maps onto Module attractor j ).
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6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
O(Γi→ j

c ,Qj
m )  between a non-empty flyby sequence Si→ j

c

 within the coupled attractor Qi
c , and a 

subset of module-m attractors Qj
m . Based on this measure, the overlap between coupled attractor 

Qi
c  and module-m attractor Qj

m is defined as O(Oi
c,Qj

m ) = O(Γi→ j
c ,Qj

m )
all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 14 
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  Switch Stability Measure

•   Switch Stability of Module m 

•   Stability of phenotype (attractor) j of Module m

                     =  part of attractor basin i that flows directly into its kth 
attractor state (provided it maps onto Module attractor j ).
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6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
O(Γi→ j

c ,Qj
m )  between a non-empty flyby sequence Si→ j

c

 within the coupled attractor Qi
c , and a 

subset of module-m attractors Qj
m . Based on this measure, the overlap between coupled attractor 

Qi
c  and module-m attractor Qj

m is defined as O(Oi
c,Qj

m ) = O(Γi→ j
c ,Qj

m )
all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 14 
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c:i  by starting the coupled system in initial state s, and updating it in the absence of noise 

until an attractor state of i is reached for the first time: sk
c:i , the kth state of attractor i. For each 

coupled attractor state sk
c:i  we then sum up the probability Π(s) of all states that map to sk
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mapped into module-m attractor j (stated differently, for all row-indices of the mapping matrix 
ℑc:i→m for which there are nonzero elements in any of the columns that correspond to module-m 
attractor j): PSC
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m )≠0}∑ . Lastly, we do not expect this overall 

probability PSC
m: j  to be larger than the stability of phenotype j in the isolated module m. 

Consequently, we compute a similar overall probability PSU
m: j  for the composite system made of 

all M modules, but in which none of the inter-module links are present. The final value of PSC
m: j

is then computed as  
PSm: j =min(PSC

m: j / PSU
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8. Rules for uncoupling a complex network into arbitrary modules. In order to measure 
dynamical modularity in randomized versions of the cell cycle network, we need general rules 
for uncoupling a network into arbitrarily chosen module fragments. In addition to removing links 
between modules, we need to define how Boolean gates loose some of their inputs while 
preserving the dynamics driven by the remaining intra-module inputs (as closely as possible).  
 
Every time an input link is removed from a Boolean gate, the number of its outputs drops by 
half. Naturally, the question is which half of the original gate should be kept? We wish to 
preserve as much of the intra-module regulation of each node as possible, and thus will attempt 
to preferentially remove canalizing influences (the most homogeneous output parts). To this end, 
for every combination of input values among the links marked for removal, we calculate the 
entropy of the Boolean gate fragment left when their inputs are fixed. The entropy of a Boolean 
gate is defined as HG = – p·log(p) – (1–p)·log(1–p). In addition to the entropy, we also test 
whether all remaining inputs of this gate fragment are functional (i.e., there exists at least one 
value combination among the other links for which an input in question dictates the output). We 
then choose the gate fragment with the highest entropy among the ones that preserve the function 
of all remaining intra-module links as the new, reduced gate. If no such gate fragment exists, we 
simply choose the largest entropy fragment (in case of two equivalent choices, we default to the 
first one found). The input-value commination among the removed gates that generated the 
chosen gate fragment will be referred to the non-canalizing inter-module inputs. 
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 Attractor Modularity Measure
  

• Attractor Modularity

                                     =  attractor i of the multi-module circuit
     =  # of Module m attractors
     = normalized overlap between attractors
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
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the attractor states are as different from each other as possible (thus minimizing the chance that 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
Hamming distance can be written as: 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm
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where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  
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• Switch Stability for 1 switch:
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  Switch Stability Measure

•   Switch Stability of Module m 

•   Stability of phenotype (attractor) j of Module m

                     =  part of attractor basin i that flows directly into its kth 
attractor state (provided it maps onto Module attractor j ).
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O(Γi→ j
c ,Qj

m ) = O(sk
c:i → sk+1

c:i ,Qj
m )

k
⋅C(Γi→ j

c ,Qj
m ).  

 
6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
O(Γi→ j

c ,Qj
m )  between a non-empty flyby sequence Si→ j

c

 within the coupled attractor Qi
c , and a 

subset of module-m attractors Qj
m . Based on this measure, the overlap between coupled attractor 

Qi
c  and module-m attractor Qj

m is defined as O(Oi
c,Qj

m ) = O(Γi→ j
c ,Qj

m )
all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 14 
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states sk
c:i  by starting the coupled system in initial state s, and updating it in the absence of noise 

until an attractor state of i is reached for the first time: sk
c:i , the kth state of attractor i. For each 

coupled attractor state sk
c:i  we then sum up the probability Π(s) of all states that map to sk

c:i : 

Wi (k) = Π(s)
s→sk

c:i∑ . As we wish to approximate the overall probability of finding the coupled 

system in a state that maps onto module-m attractor j, we go through each coupled attractor i for 
which O(Qi

c,Qj
m ) ≠ 0 , and sum up the Wi (k)  probabilities along the (full) flyby segment Si→ j

c  
mapped into module-m attractor j (stated differently, for all row-indices of the mapping matrix 
ℑc:i→m for which there are nonzero elements in any of the columns that correspond to module-m 
attractor j): PSC

m: j = Wi (k)
{k:ℑc:i→m (k, j )≠0}∑{i:O(Qi

c ,Qj
m )≠0}∑ . Lastly, we do not expect this overall 

probability PSC
m: j  to be larger than the stability of phenotype j in the isolated module m. 

Consequently, we compute a similar overall probability PSU
m: j  for the composite system made of 

all M modules, but in which none of the inter-module links are present. The final value of PSC
m: j

is then computed as  
PSm: j =min(PSC

m: j / PSU
m: j,1) . 

 
8. Rules for uncoupling a complex network into arbitrary modules. In order to measure 
dynamical modularity in randomized versions of the cell cycle network, we need general rules 
for uncoupling a network into arbitrarily chosen module fragments. In addition to removing links 
between modules, we need to define how Boolean gates loose some of their inputs while 
preserving the dynamics driven by the remaining intra-module inputs (as closely as possible).  
 
Every time an input link is removed from a Boolean gate, the number of its outputs drops by 
half. Naturally, the question is which half of the original gate should be kept? We wish to 
preserve as much of the intra-module regulation of each node as possible, and thus will attempt 
to preferentially remove canalizing influences (the most homogeneous output parts). To this end, 
for every combination of input values among the links marked for removal, we calculate the 
entropy of the Boolean gate fragment left when their inputs are fixed. The entropy of a Boolean 
gate is defined as HG = – p·log(p) – (1–p)·log(1–p). In addition to the entropy, we also test 
whether all remaining inputs of this gate fragment are functional (i.e., there exists at least one 
value combination among the other links for which an input in question dictates the output). We 
then choose the gate fragment with the highest entropy among the ones that preserve the function 
of all remaining intra-module links as the new, reduced gate. If no such gate fragment exists, we 
simply choose the largest entropy fragment (in case of two equivalent choices, we default to the 
first one found). The input-value commination among the removed gates that generated the 
chosen gate fragment will be referred to the non-canalizing inter-module inputs. 
 
9. Randomization methods. 
10. Coarse-graining the state transition graph of a multi-module system. 
 
Table S1, restriction switch 
Table S2, phase switch 
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6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
O(Γi→ j

c ,Qj
m )  between a non-empty flyby sequence Si→ j

c

 within the coupled attractor Qi
c , and a 

subset of module-m attractors Qj
m . Based on this measure, the overlap between coupled attractor 

Qi
c  and module-m attractor Qj

m is defined as O(Oi
c,Qj

m ) = O(Γi→ j
c ,Qj

m )
all disjoint closest flybys of j

. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj

m )
j
(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M

. 

 
7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 14 
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high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M
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7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
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, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 14 
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states sk
c:i  by starting the coupled system in initial state s, and updating it in the absence of noise 

until an attractor state of i is reached for the first time: sk
c:i , the kth state of attractor i. For each 

coupled attractor state sk
c:i  we then sum up the probability Π(s) of all states that map to sk

c:i : 

Wi (k) = Π(s)
s→sk

c:i∑ . As we wish to approximate the overall probability of finding the coupled 

system in a state that maps onto module-m attractor j, we go through each coupled attractor i for 
which O(Qi

c,Qj
m ) ≠ 0 , and sum up the Wi (k)  probabilities along the (full) flyby segment Si→ j

c  
mapped into module-m attractor j (stated differently, for all row-indices of the mapping matrix 
ℑc:i→m for which there are nonzero elements in any of the columns that correspond to module-m 
attractor j): PSC

m: j = Wi (k)
{k:ℑc:i→m (k, j )≠0}∑{i:O(Qi

c ,Qj
m )≠0}∑ . Lastly, we do not expect this overall 

probability PSC
m: j  to be larger than the stability of phenotype j in the isolated module m. 

Consequently, we compute a similar overall probability PSU
m: j  for the composite system made of 

all M modules, but in which none of the inter-module links are present. The final value of PSC
m: j

is then computed as  
PSm: j =min(PSC

m: j / PSU
m: j,1) . 

 
8. Rules for uncoupling a complex network into arbitrary modules. In order to measure 
dynamical modularity in randomized versions of the cell cycle network, we need general rules 
for uncoupling a network into arbitrarily chosen module fragments. In addition to removing links 
between modules, we need to define how Boolean gates loose some of their inputs while 
preserving the dynamics driven by the remaining intra-module inputs (as closely as possible).  
 
Every time an input link is removed from a Boolean gate, the number of its outputs drops by 
half. Naturally, the question is which half of the original gate should be kept? We wish to 
preserve as much of the intra-module regulation of each node as possible, and thus will attempt 
to preferentially remove canalizing influences (the most homogeneous output parts). To this end, 
for every combination of input values among the links marked for removal, we calculate the 
entropy of the Boolean gate fragment left when their inputs are fixed. The entropy of a Boolean 
gate is defined as HG = – p·log(p) – (1–p)·log(1–p). In addition to the entropy, we also test 
whether all remaining inputs of this gate fragment are functional (i.e., there exists at least one 
value combination among the other links for which an input in question dictates the output). We 
then choose the gate fragment with the highest entropy among the ones that preserve the function 
of all remaining intra-module links as the new, reduced gate. If no such gate fragment exists, we 
simply choose the largest entropy fragment (in case of two equivalent choices, we default to the 
first one found). The input-value commination among the removed gates that generated the 
chosen gate fragment will be referred to the non-canalizing inter-module inputs. 
 
9. Randomization methods. 
10. Coarse-graining the state transition graph of a multi-module system. 
 
Table S1, restriction switch 
Table S2, phase switch 
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 Attractor Modularity Measure
  

• Attractor Modularity

                                     =  attractor i of the multi-module circuit
     =  # of Module m attractors
     = normalized overlap between attractors
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6.4. Calculating AMm and AMM. In the above sections, we defined a generalized overlap 
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m )  between a non-empty flyby sequence Si→ j

c
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c , and a 
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m is defined as O(Oi
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. Next, 

we characterize the modularity of Qi
c  with respect to module m as the average of these overlaps 

across all module attractors for which at least one non-empty Si→ j
c  flyby segment exists:

AMi,m = O(Qi
c,Qj
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(main Fig. 3A). To satisfy the first principle, all AMi,m values need to be 

high, for each module m. Consequently, we define AMm = AMi,mi∏( )
1/qc

 (qc is the number of 

coupled system attractors), followed by an Attractor Modularity Measure that quantifies validity 
of the first principle as: 

AMM = AMmm∏( )
1/M
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7. The Third Principle – Switch Stability Measure 
 
The Switch Stability Measure (SSM) is designed to test whether every single phenotype 
(attractor) that each module can select from is relevant to the global dynamics of the coupled 
system. In other words, there are no switches (DMs) that never take on one (or more) of their 
states due to their interactions with neighboring DMs. Giving each module equal weight, we 
define SSM as the geometric mean of module-level Switch Stability (SSm) scores: 

SSM = SSmm∏( )
1/M

, where M is the number of modules. At the level of each module, we expect 

every phenotype to be represented in the global dynamics (quantified by the phenotype stability 

PSm: j  defined below). We thus employ another geometric average: SSm = PSm: jj∏( )
1/qm

, where 

qm is the number of attractors (phenotypes) in module m. 
 
7.1. Defining Phenotype Stability PSm:j . In order to claim that the coupled system’s dynamics 
“implements” a module phenotype, two conditions have to be met. First, there needs to be at 
least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi

c,Qj
m )  between coupled attractor i and module-m 

attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
Π(s) of finding the coupled system in any state s in the presence of gate error pE (see sections 3 
and 4). Next, we estimate the size of the phase space region (in terms of visitation probability) 
from which the system’s dynamics flows into each individual attractor state. For fixed-point 
attractors, this equals the overall probability of finding the system somewhere in its basin. To 
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c passes to each of the module attractor states it toggles through. Consequently, 

measuring AMm requires us to: 1) find continuous segments along the coupled limit-cycle Qi
c  

that are closest to module attractor Qj
m (termed the flyby of the coupled attractor i near the 

module attractor j), 2) define an overlap measure between module attractor Qj
m  and these 

continuous segments of limit-cycle Qi
c , and 3) combine these overlaps across all coupled and 

module-m attractors (i and j values) into a single AMm attractor modularity score (Fig. S3B).  
 
Prior to describing our general solution to each of these requirements (see 6.1-3), we will detail 
the simplest scenario for calculating AMm. In this scenario, all attractors of the coupled dynamics 
as well as those of module m are fixed-points. Ideally, each coupled attractor state Qi

c  has high 
overlap with one of the attractor states of module m. We thus pick the largest normalized overlap 
across all module-level attractors: AMi:m =max{O(s1

c:i, z1
m: j )} j , where

 
Qi

c = {s1
c:i | s1

c:i =Gc (s1
c:i )}  and 

Qj
m = {z1

m: j | z1
m: j =Gm (z1

m: j )} are fixed-points of the coupled system and module m, respectively. 
AMi,m is a measure of the modularity of global attractor i with respect to module m. For example, 
the red line on Fig. 3A between global attractor G2 Arrest and Phase Switch Module attractor G2 
represents the maximum overlap for global G2 Arrest: AMG2Arrest,PhaseSwitch = 0.909. As we need 
all coupled attractors to have high AMi,m overlap in order to satisfy the first principle, AMm is 

defined as the geometric mean AMm = AMi,mi∏( )
1/qc

 , where qc is the number of coupled system 

attractors. Finally, the coupled system is characterized by the attractor modularity measure 
AMM = (∏m AMm)1/M. 

6.1. Flyby of the coupled limit-cycle Qi
c  near module attractor Qj

m . In order to identify the 

continuous segment(s) of the limit-cycle Qi
c that fall into the neighborhood of module attractor 

Qj
m , we first calculate the normalized overlap O(sk

c:i, zl
m: j )  between each state sk

c:i along the 

coupled cycle i and state zl
m: j of module-m attractor j. Next, we map each coupled cycle state sk

c:i  

onto a list of module attractor states J c:i→m (k)  for which the normalized overlap between sk
c:i  and 

all module-m attractor states (regardless of which module attractor j they belong to) is maximal 
(black and red links on Fig. 3A, black links on Fig. S3B): 
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least one coupled attractor that maps onto this module attractor. We tested this in calculating 
AAM, in that we computed the overlap O(Qi
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attractor j. Second, it is important that even if a coupled Qi
c  attractor exists that overlaps with 

module-m attractor j, its basin and overall stability should not be very small. In order to quantify 
this, we leverage noisy Boolean dynamics and calculate (or sample) the long-term probability 
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attractors, this equals the overall probability of finding the system somewhere in its basin. To 
generalize it to limit-cycles, we map each state s of the coupled system onto individual attractor 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 
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i≠ j
/ MQmax (qm )   if qm >1 

                     0                      if qm =1
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The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 
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where | xi |  = | xi
p − xi

r |
r=p+1

q

∑
p=1

q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
Hamming distance can be written as: 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
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itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
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the attractor states are as different from each other as possible (thus minimizing the chance that 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm
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where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  
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designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm
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where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 

MQm =
h(Qi

m,Qj
m )

i≠ j
/ MQmax (qm )   if qm >1 

                     0                      if qm =1

"

#
$

%$
. 

 
The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 

MQmax (q) = 1
N

max 2
q(q−1)

| xi
p − xi

r |
i=1

N

∑
r=p+1

q

∑
p=1

q

∑
#

$
%%

&

'
((=

1
N

max 2
q(q−1)

| xi |
i=1

N

∑
#

$
%

&

'
( ≤

2
q(q−1)

max | xi |( )i
 ,  

where | xi |  = | xi
p − xi

r |
r=p+1

q

∑
p=1

q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 
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where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
Hamming distance can be written as: 

MQmax (q) ≤ 2
q(q−1)

q
2
#

$%
&

'(
⋅

q+1
2

#

$%
&

'(
. 

 
This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  
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Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi
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m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 
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The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 
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p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  
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where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
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q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 

• Switch Stability Measure:
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the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part

A
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Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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DM States

the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part
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Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part
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Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part
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Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part

A

B

C

Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 

MQm =
h(Qi

m,Qj
m )

i≠ j
/ MQmax (qm )   if qm >1 

                     0                      if qm =1

"

#
$

%$
. 

 
The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 

MQmax (q) = 1
N

max 2
q(q−1)

| xi
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q
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max | xi |( )i
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where | xi |  = | xi
p − xi

r |
r=p+1

q

∑
p=1

q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  

MQM = MQM = MQc MQmm∏( )
1/M

. 

 
High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
#
$

%
& qmm∏( ) , which 

is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 

MQm =
h(Qi

m,Qj
m )

i≠ j
/ MQmax (qm )   if qm >1 

                     0                      if qm =1
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The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 
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where | xi |  = | xi
p − xi

r |
r=p+1

q

∑
p=1

q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  
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High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 
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is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
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The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
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scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 

MQm =
h(Qi

m,Qj
m )
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The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 

MQmax (q) = 1
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where | xi |  = | xi
p − xi

r |
r=p+1

q

∑
p=1

q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 

8 

 
 

 

• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 

MQm =
h(Qi

m,Qj
m )

i≠ j
/ MQmax (qm )   if qm >1 

                     0                      if qm =1

"

#
$

%$
. 

 
The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 

MQmax (q) = 1
N

max 2
q(q−1)

| xi
p − xi

r |
i=1

N

∑
r=p+1

q

∑
p=1

q

∑
#

$
%%

&

'
((=

1
N

max 2
q(q−1)

| xi |
i=1

N

∑
#

$
%

&

'
( ≤

2
q(q−1)

max | xi |( )i
 ,  

where | xi |  = | xi
p − xi

r |
r=p+1

q

∑
p=1

q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 

8 

 
 

 

• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 

MQm =
h(Qi

m,Qj
m )

i≠ j
/ MQmax (qm )   if qm >1 

                     0                      if qm =1

"

#
$

%$
. 

 
The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 

MQmax (q) = 1
N

max 2
q(q−1)

| xi
p − xi

r |
i=1

N

∑
r=p+1

q

∑
p=1

q

∑
#

$
%%

&

'
((=

1
N

max 2
q(q−1)

| xi |
i=1

N

∑
#

$
%

&

'
( ≤

2
q(q−1)

max | xi |( )i
 ,  

where | xi |  = | xi
p − xi

r |
r=p+1

q

∑
p=1

q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 

8 

 
 

 

• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 

MQm =
h(Qi

m,Qj
m )

i≠ j
/ MQmax (qm )   if qm >1 

                     0                      if qm =1

"

#
$

%$
. 

 
The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 

MQmax (q) = 1
N

max 2
q(q−1)

| xi
p − xi

r |
i=1

N

∑
r=p+1

q

∑
p=1

q

∑
#

$
%%

&

'
((=

1
N

max 2
q(q−1)

| xi |
i=1

N

∑
#

$
%

&

'
( ≤

2
q(q−1)

max | xi |( )i
 ,  

where | xi |  = | xi
p − xi

r |
r=p+1

q

∑
p=1

q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 

8 

 
 

 

• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 

MQm =
h(Qi

m,Qj
m )

i≠ j
/ MQmax (qm )   if qm >1 

                     0                      if qm =1

"

#
$

%$
. 

 
The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 

MQmax (q) = 1
N

max 2
q(q−1)

| xi
p − xi

r |
i=1

N

∑
r=p+1

q

∑
p=1

q

∑
#

$
%%

&

'
((=

1
N

max 2
q(q−1)

| xi |
i=1

N

∑
#

$
%

&

'
( ≤

2
q(q−1)

max | xi |( )i
 ,  

where | xi |  = | xi
p − xi

r |
r=p+1

q

∑
p=1

q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 

  Module Quality & 
  Coordination Measure

•   Module Quality Measure

      =  attractor i of Module m
        =  # of Module m attractors
        = Hamming distance between attractors

•   Module Coordination Measure

9 

 
 

 

attractors), the maximum pairwise difference between bits occurs when there are 3 elements with 
value 0 and 3 with value 1, in which case | xi |  = 9 . In general: 

| xi |  =
(q / 2)2

(q−1)(q+1) / 4

"
#
$

%$

for even q
for odd q

=
q
2
&

'(
)

*+
⋅

q+1
2

&

'(
)

*+
, 

where [x] denotes the integer part of x. Thus, an upper bound for the average normalized 
Hamming distance can be written as: 

MQmax (q) ≤ 2
q(q−1)

q
2
#

$%
&

'(
⋅

q+1
2

#

$%
&

'(
. 
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This maximum cannot always be reached with q distinct point attractors, especially if q is large, 
as there may not be q distinct combinations of 0’s and 1’s in which half of the values are 0. 
Nevertheless, when q is small (typical in our modular systems) this maximum can, in theory, be 
achieved. 
 
Using the method above, we calculate the value of MQm for each module, as well as for the 

coupled system ( MQc ). The first principle mandates that all these values be high, and we chose 
to give equal weight to the coupled system as one high-level DM, and all its constituent, lower-
level DMs taken together. To this end, we define the overall Module Quality Measure as:  
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High MQM indicates that all modules, and the coupled system, are robust switches (in as much 
as a switch can be robust, given its number of attractors). In addition to DM quality at all levels, 
a signature that a set of DMs are tightly coupled into a higher-level DM (i.e., the coupled system) 
is that their connections severely restrict the phenotype combinations they coexist in. We 

quantified this via the Module Coordination Measure, MCM = qmm∏( )− qc
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is closest to 1 when the number coupled attractors qc is minimal. Finally, we define Module 
Quality & Coordination Measure MQC as the product: MQC = MQM ⋅MCM . 
   
6. The Second Principle - Attractor Modularity Measure 
 
The Attractor Modularity Measure (AMM) characterizes how well the attractors of the coupled 
system match the attractor combinations of isolated dynamical modules. To give each module 
equal weight, we define AMM as the geometric mean of module-level attractor modularity 
scores: AMM = (∏m AMm)1/M, where M is the number of modules.  
 
Our goal is to quantify the degree to which the attractors of the coupled dynamics, Qi

c (i = 1,…, 
qc), “execute” the attractors (or phenotypes) of module m. As long as all Qi

c  attractors of the 
coupled system are fixed-points, this requires identifying the most similar module-m attractor for 
each attractor state Qi

c of the Gc system. Developing a general measure, applicable to networks 
with arbitrary global and module attractors, creates two additional demands. First, a meaningful 
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• Let O(sc,zm) denote the normalized overlap between an arbitrary state sc of the coupled 
system Gc and an arbitrary state zm of module Gm:  

O(sc, zm ) =1− H (sc, zm )
Nm

, 

where H (sc, zm )  is the Hamming distance between zm, and the subset of node states 
within the coupled state sc that correspond to module m (a subset of length Nm; see Fig. 
S3A).  

 
As described in the main manuscript, the Module Quality & Coordination Measure (MQC) is 
designed to be maximal when all module attractors are robust switches with very few, distinct 
phenotypes. In addition, this measure is expected to indicate that the system of coupled DMs is, 
itself, a higher-level module. Thus we expect that it, too, is a switch among a few distinct 
phenotypes. To quantify these qualitative assertions, we posit that in a robust phenotype switch, 
the attractor states are as different from each other as possible (thus minimizing the chance that 
random, noise-induce node state flips can toggle the DM switch). We can measure this distance 
using the normalized Hamming distance between attractors. In general, this can be defined as the 
average normalized Hamming distance between every state pair along the two attractors:  

h(Qi
m,Qj

m ) = h(zl
m:i, zp

m: j )
l=1,...,Li

m , p=1,...,Lj
m

  for module m,  

h(Qi
c,Qj

c ) = h(sl
i, sp

j )
l=1,...,Li

c , p=1,...,Lj
c
   for the coupled system.  

Next, we define the a module quality measure, MQ, as the ratio between the average of 
h(Qi

m,Qj
m )  across all attractor pairs of the module, and the maximum average Hamming distance 

the same qc number of point attractors could have, in theory: 

MQm =
h(Qi
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The maximum average normalized Hamming distance q number of point-attractors with N nodes 
can have is: 
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where | xi |  = | xi
p − xi

r |
r=p+1
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q

∑  ( xi
p  is the value of node node i in point attractor p). In essence, 

| xi |  represents the number of bit-pairs with different values inside the binary array 
xi = {xi

1, xi
2,…, xi

q} . Assuming that n0 elements in this array have value 0 and n1 elements have 

value 1 (n0 + n1 = N), | xi |  = n0 ⋅n1 . The maximum value of  | xi |  is achieved when half of the 
array has value 0 and half has value 1. For example, in a binary array with 6 elements (6 
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HIERARCHY 
OF MODULESMODULE

the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part

A

B

C

Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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Summary of dynamical modularity in cellular 
regulatory networks 

I. Phenotypes of a multi-switch system are switch-phenotype combinations

II. Every switch-phenotype is present in at least one global phenotype

III.  Dynamical modules at all scales are multistable switches with a small 

number of radically different phenotypes



Have these insights helped?  
— current work —

MiDAS model 
- ROS 

- SIRT3 KO

- mito dysfunction

Sizek et al, 2024. Translational 
Oncology, 49:102084.
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the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part

A

B

C

Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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the prediction of the scale-free model, for
which the clustering coefficient decreases as
N!0.75 (18), the clustering coefficient of met-
abolic networks is independent of their size
(Fig. 2B).

These results demonstrate a fundamental
conflict between the predictions of the cur-
rent models of metabolic organization. The
high, size-independent clustering coefficient
offers strong evidence for modularity, where-
as the power law degree distribution of all
metabolic networks (10, 11) strongly sup-
ports the scale-free model and rules out a
manifestly modular topology. To resolve this
apparent contradiction, we propose a simple
heuristic model of metabolic organization,
which we refer to as a “hierarchical” network
(Fig. 1C) (19). In such a model network, our
starting point is a small cluster of four dense-
ly linked nodes. Next, we generate three rep-
licas of this hypothetical module and connect
the three external nodes of the replicated

clusters to the central node of the old cluster,
obtaining a large 16-node module. Subse-
quently, we again generate three replicas of
this 16-node module and connect the periph-
eral nodes to the central node of the old
module (Fig. 1C). These replication and con-
nection steps can be repeated indefinitely, in
each step quadrupling the number of nodes in
the system. The architecture of such a net-
work integrates a scale-free topology with an
inherent modular structure. It has a power law
degree distribution with degree exponent " #
1 $ (ln 4)/(ln 3) # 2.26, in agreement with
" # 2.2 observed in metabolic networks. Its
clustering coefficient C ! 0.6 is also compa-
rable with that observed for metabolic net-
works. Most important, the clustering coeffi-
cient of the model is independent of the size
of the network, in agreement with the results
of Fig. 2B.

A unique feature of the proposed net-
work model, not shared by either the scale-

free (Fig. 1A) or modular (Fig. 1B) models,
is its hierarchical architecture. This hierar-
chy, which is evident from a visual inspec-
tion, is intrinsic to the assembly by repeat-
ed quadrupling of the system. The hierar-
chy can be characterized quantitatively by
using the recent observation (20) that, in
deterministic scale-free networks, the clus-
tering coefficient of a node with k links
follows the scaling law C(k) % k!1. This
scaling law quantifies the coexistence of a
hierarchy of nodes with different degrees of
modularity, as measured by the clustering
coefficient, and is directly relevant to our
model (Fig. 1C). Indeed, the nodes at the
center of the numerous 4-node modules
have a clustering coefficient C # 3/4, those
at the center of a 16-node module have k #
13 and C # 2/13, and those at the center of
the 64-node modules have k # 40 and C #
2/40, indicating that the higher a node’s
connectivity, the smaller its clustering co-
efficient, asymptotically following the 1/k
law.

To investigate whether such hierarchical
organization is present in cellular metabo-
lism, we measured the C(k) function for the
metabolic networks of all 43 organisms. As
shown in Fig. 2, C through F, for each
organism, C(k) is well approximated by
C(k) % k!1, in contrast to the k-indepen-
dent C(k) predicted by both the scale-free
and modular networks. This provides direct
evidence for an inherently hierarchical or-
ganization. Such hierarchical modularity
reconciles within a single framework all the
observed properties of metabolic networks:
their scale-free topology; high, system
size–independent clustering coefficient;
and the power law scaling of C(k).

A key issue from a biological perspective
is whether the identified hierarchical archi-
tecture reflects the true functional organiza-
tion of cellular metabolism. To uncover
potential relations between topological mod-
ularity and the functional classification of
different metabolites, we concentrated on the
metabolic network of E. coli, whose metabol-
ic reactions have been exhaustively studied,
both biochemically and genetically (21). Us-
ing a previously established graph-theoretical
representation (10), we first subjected E. co-
li’s metabolic organization to a three-step
reduction process, replacing nonbranching
pathways with equivalent links, allowing us
to decrease its complexity without altering
the network topology (16). Next, we calcu-
lated the topological overlap matrix OT(i, j)
of the condensed metabolic network (Fig.
3A). A topological overlap of 1 between sub-
strates i and j implies that they are connected
to the same substrates, whereas a 0 value
indicates that i and j do not share links to
common substrates among the metabolites
they react with. The metabolites that are part

A

B

C

Fig. 1. Complex network
models. (A) A schematic il-
lustration (left) of a scale-
free network, whose degree
distribution follows a power
law. In such a network, a few
highly connected nodes, or
hubs (blue circles), play an
important role in keeping the
whole network together. A
typical configuration (right)
of a scale-free network with
256 nodes is also shown, ob-
tained using the scale-free
model, which requires the
addition of a new node at
each time such that existing
nodes with higher degrees of
connectivity have a higher
chance of being linked to the
new nodes (12). The nodes
are arranged in space with a
standard clustering algorithm
(30) to illustrate the absence
of an underlying modularity.
(B) Schematic illustration
(left) of a manifestly modular
network made of four highly
interlinked modules connect-
ed to each other by a few
links. This intuitive topology
does not have a scale-free
degree distribution, as most
of its nodes have a similar
number of links, and hubs are
absent. A standard clustering
algorithm uncovers the net-
work’s inherent modularity
(right) by partitioning a mod-
ular network of N # 256
nodes into the four isolated
structures built into the sys-
tem. (C) The hierarchical net-
work (left) has a scale-free
topology with embedded modularity. The hierarchical levels are represented in increasing order
from blue to green to red. Standard clustering algorithms (right) are less successful in uncovering
the network’s underlying modularity. A detailed quantitative characterization of the three network
models is available in (16).
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• how does dynamical modularity relate to stable motifs? 

Major questions & future theory work

• can we use stable motifs to find 
regulatory modules in large networks?

• dynamical modularity measures for 
continuous models

• how to conceptualize parts of a 
network that are NOT switches?

• input signaling cascades that 

process dynamical info but run 
one-way


• “connective tissue” between 
switches


• modules with an excitable but 
robust oscillator (e.g. p53 
oscillations)



(It need not be modeled as a black box that 
“mimics” the cell.)

The complexity of cellular 
regulation has an intuitive, 
general underlying logic.
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